skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simple Temporal Networks: A Practical Foundation for Temporal Representation and Reasoning (Invited Talk)
Since Simple Temporal Networks (STNs) were first introduced in 1991, there have been numerous theoretic and algorithmic advances that have made them practical for a wide variety of applications. However, the presentation of most of the important advances have been scattered across numerous conference papers and journal articles. As a result, it is too easy for even experienced researchers to be unaware of results that could positively impact their work. In this talk we review the most important results about STNs for researchers in Artificial Intelligence who are interested in incorporating the management of time and temporal constraints into their projects.  more » « less
Award ID(s):
1909739
PAR ID:
10343280
Author(s) / Creator(s):
;
Editor(s):
Combi, Carlo; Eder, Johann; Reynolds, Mark
Date Published:
Journal Name:
Leibniz international proceedings in informatics
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temporal prefetching offers great potential, but this potential is difficult to achieve because of the need to store large amounts of prefetcher metadata off chip. To reduce the latency and traffic of off-chip metadata accesses, recent advances in temporal prefetching have proposed increasingly complex mechanisms that cache and prefetch this off-chip metadata. This paper suggests a return to simplicity: We present a temporal prefetcher whose metadata resides entirely on chip. The key insights are (1) only a small portion of prefetcher metadata is important, and (2) for most workloads with irregular accesses, the benefits of an effective prefetcher outweigh the marginal benefits of a larger data cache. Thus, our solution, the Triage prefetcher, identifies important metadata and uses a portion of the LLC to store this metadata, and it dynamically partitions the LLC between data and metadata. Our empirical results show that when compared against spatial prefetchers that use only on-chip metadata, Triage performs well, achieving speedups on irregular subset of SPEC2006 of 23.5% compared to 5.8% for the previous state-of-the-art. When compared against state-of-the-art temporal prefetchers that use off-chip metadata, Triage sacrifices performance on single-core systems (23.5% speedup vs. 34.7% speedup), but its 62% lower traffic overhead translates to better performance in bandwidth-constrained 16-core systems (6.2% speedup vs. 4.3% speedup). 
    more » « less
  2. Abstract Understanding the evolutionary consequences of anthropogenic change is imperative for estimating long‐term species resilience. While contemporary genomic data can provide us with important insights into recent demographic histories, investigating past change using present genomic data alone has limitations. In comparison, temporal genomics studies, defined herein as those that incorporate time series genomic data, utilize museum collections and repeated field sampling to directly examine evolutionary change. As temporal genomics is applied to more systems, species and questions, best practices can be helpful guides to make the most efficient use of limited resources. Here, we conduct a systematic literature review to synthesize the effects of temporal genomics methodology on our ability to detect evolutionary changes. We focus on studies investigating recent change within the past 200 years, highlighting evolutionary processes that have occurred during the past two centuries of accelerated anthropogenic pressure. We first identify the most frequently studied taxa, systems, questions and drivers, before highlighting overlooked areas where further temporal genomic studies may be particularly enlightening. Then, we provide guidelines for future study and sample designs while identifying key considerations that may influence statistical and analytical power. Our aim is to provide recommendations to a broad array of researchers interested in using temporal genomics in their work. 
    more » « less
  3. For more than two decades, research focusing on both clinical and non-clinical populations has suggested a key role for specific regions in the regulation of self-conscious emotions. It is speculated that both the expression and the interpretation of self-conscious emotions are critical in humans for action planning and response, communication, learning, parenting, and most social encounters. Empathy, Guilt, Jealousy, Shame, and Pride are all categorized as self-conscious emotions, all of which are crucial components to one’s sense of self. There has been an abundance of evidence pointing to the right Fronto-Temporal involvement in the integration of cognitive processes underlying the expression of these emotions. Numerous regions within the right hemisphere have been identified including the right temporal parietal junction (rTPJ), the orbitofrontal cortex (OFC), and the inferior parietal lobule (IPL). In this review, we aim to investigate patient cases, in addition to clinical and non-clinical studies. We also aim to highlight these specific brain regions pivotal to the right hemispheric dominance observed in the neural correlates of such self-conscious emotions and provide the potential role that self-conscious emotions play in evolution. 
    more » « less
  4. This research investigated human performance in response to task demands that may be used to convey information about the human to an artificial agent. We performed an experiment with a dynamic time-sharing task to investigate participants development of temporal awareness of the task event unfolding in time. Temporal awareness as an extension, or a special case, of situation awareness, may provide for useful measures of covert mental models applicable to numerous tasks and for input to human-aware AI agents. Temporal awareness measures may be used to classify human performance into the control modes in the contextual control model (COCOM): scrambled, opportunistic, tactical, and strategic. Twenty-one participants participated in a within subjects experiment with an abstract task of resetting four independent timers within their respective windows of opportunity. The results show that temporal measures of task performance are sensitive to changes in task disruptions and difficulty and therefore have promise for human-aware AI. 
    more » « less
  5. Accurate clinical therapeutics rely on understanding the metabolic responses of individual cells. However, the high level of heterogeneity between cells means that simply sampling from large populations of cells is not necessarily a reliable approximation of an individual cell’s response. As a result, there have been numerous developments in the field of single-cell analysis to address this lack of knowledge. Many of these developments have focused on the coupling of capillary electrophoresis (CE), a separation technique with low sample consumption and high resolving power, and mass spectrometry (MS), a sensitive detection method for interrogating all ions in a sample in a single analysis. In recent years, there have been many notable advancements at each step of the single-cell CE-MS analysis workflow, including sampling, manipulation, separation, and MS analysis. In each of these areas, the combined improvements in analytical instrumentation and achievements of numerous researchers have served to drive the field forward to new frontiers. Consequently, notable biological discoveries have been made possible by the implementation of these methods. Although there is still room in the field for numerous further advances, researchers have effectively minimized various limitations in detection of analytes, and it is expected that there will be many more developments in the near future. 
    more » « less