Though the right hemisphere has been implicated in talker processing, it is thought to play a minimal role in phonetic processing, at least relative to the left hemisphere. Recent evidence suggests that the right posterior temporal cortex may support learning of phonetic variation associated with a specific talker. In the current study, listeners heard a male talker and a female talker, one of whom produced an ambiguous fricative in /s/-biased lexical contexts (e.g., epi?ode) and one who produced it in /∫/-biased contexts (e.g., friend?ip). Listeners in a behavioral experiment (Experiment 1) showed evidence of lexically guided perceptual learning, categorizing ambiguous fricatives in line with their previous experience. Listeners in an fMRI experiment (Experiment 2) showed differential phonetic categorization as a function of talker, allowing for an investigation of the neural basis of talker-specific phonetic processing, though they did not exhibit perceptual learning (likely due to characteristics of our in-scanner headphones). Searchlight analyses revealed that the patterns of activation in the right superior temporal sulcus (STS) contained information about who was talking and what phoneme they produced. We take this as evidence that talker information and phonetic information are integrated in the right STS. Functional connectivity analyses suggested that the process of conditioning phonetic identity on talker information depends on the coordinated activity of a left-lateralized phonetic processing system and a right-lateralized talker processing system. Overall, these results clarify the mechanisms through which the right hemisphere supports talker-specific phonetic processing.
- Award ID(s):
- 1909824
- PAR ID:
- 10395750
- Date Published:
- Journal Name:
- Brain Sciences
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2076-3425
- Page Range / eLocation ID:
- 138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Non‐conscious processing of human memory has traditionally been difficult to objectively measure and thus understand. A prior study on a group of hippocampal amnesia (
N = 3) patients and healthy controls (N = 6) used a novel procedure for capturing neural correlates of implicit memory using event‐related potentials (ERPs): old and new items were equated for varying levels of memory awareness, with ERP differences observed from 400 to 800 ms in bilateral parietal regions that were hippocampal‐dependent. The current investigation sought to address the limitations of that study by increasing the sample of healthy subjects (N = 54), applying new controls for construct validity, and developing an improved, open‐source tool for automated analysis of the procedure used for equating levels of memory awareness. Results faithfully reproduced prior ERP findings of parietal effects that a series of systematic control analyses validated were not contributed to nor contaminated by explicit memory. Implicit memory effects extended from 600 to 1000 ms, localized to right parietal sites. These ERP effects were found to be behaviorally relevant and specific in predicting implicit memory response times, and were topographically dissociable from other traditional ERP measures of implicit memory (miss vs. correct rejections) that instead occurred in left parietal regions. Results suggest first that equating for reported awareness of memory strength is a valid, powerful new method for revealing neural correlates of non‐conscious human memory, and second, behavioral correlations suggest that these implicit effects reflect a pure form of priming, whereas misses represent fluency leading to the subjective experience of familiarity. -
null (Ed.)Abstract Neurobiological models of speech perception posit that both left and right posterior temporal brain regions are involved in the early auditory analysis of speech sounds. However, frank deficits in speech perception are not readily observed in individuals with right hemisphere damage. Instead, damage to the right hemisphere is often associated with impairments in vocal identity processing. Herein lies an apparent paradox: The mapping between acoustics and speech sound categories can vary substantially across talkers, so why might right hemisphere damage selectively impair vocal identity processing without obvious effects on speech perception? In this review, I attempt to clarify the role of the right hemisphere in speech perception through a careful consideration of its role in processing vocal identity. I review evidence showing that right posterior superior temporal, right anterior superior temporal, and right inferior / middle frontal regions all play distinct roles in vocal identity processing. In considering the implications of these findings for neurobiological accounts of speech perception, I argue that the recruitment of right posterior superior temporal cortex during speech perception may specifically reflect the process of conditioning phonetic identity on talker information. I suggest that the relative lack of involvement of other right hemisphere regions in speech perception may be because speech perception does not necessarily place a high burden on talker processing systems, and I argue that the extant literature hints at potential subclinical impairments in the speech perception abilities of individuals with right hemisphere damage.more » « less
-
Abstract Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch.
Hum Brain Mapp 37:1474‐1485, 2016 . © 2016 Wiley Periodicals, Inc. -
Abstract A growing body of evidence suggests that in adults, there is a spatially consistent “inferior temporal numeral area” (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca’s area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.