skip to main content


Title: Dynamic 3D On-Chip BBB Model Design, Development, and Applications in Neurological Diseases
The blood–brain barrier (BBB) is a vital structure for maintaining homeostasis between the blood and the brain in the central nervous system (CNS). Biomolecule exchange, ion balance, nutrition delivery, and toxic molecule prevention rely on the normal function of the BBB. The dysfunction and the dysregulation of the BBB leads to the progression of neurological disorders and neurodegeneration. Therefore, in vitro BBB models can facilitate the investigation for proper therapies. As the demand increases, it is urgent to develop a more efficient and more physiologically relevant BBB model. In this review, the development of the microfluidics platform for the applications in neuroscience is summarized. This article focuses on the characterizations of in vitro BBB models derived from human stem cells and discusses the development of various types of in vitro models. The microfluidics-based system and BBB-on-chip models should provide a better platform for high-throughput drug-screening and targeted delivery.  more » « less
Award ID(s):
1917618
NSF-PAR ID:
10343321
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Cells
Volume:
10
Issue:
11
ISSN:
2073-4409
Page Range / eLocation ID:
3183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Recently, the in vitro blood–brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications they have with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB, and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry, and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF, and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood–brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for iPCs and iECs in the transwell system and 3D microfluidics channels. Results: The derived iPCs expressed common markers PDGFRb and NG2, and brain-specific genes FOXF2 , ABCC9 , KCNJ8 , and ZIC1 . The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, and BBB-associated genes BRCP , GLUT-1 , PGP , ABCC1 , OCLN , and SLC2A1 . The co-culture of the two cell types responded to the stimulation of amyloid β42 oligomers by the upregulation of the expression of TNFa , IL6 , NFKB , Casp3 , SOD2 , and TP53 . The co-culture also showed the property of trans-endothelial electrical resistance. The proof of concept vascularization strategy was demonstrated in a 3D microfluidics-based device. Conclusion: The derived iPCs and iECs have brain-specific properties, and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening. 
    more » « less
  2. Abstract

    Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two‐way interface between man‐made devices and physiological systems at the molecular level. With the recent development of room‐temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real‐time, targeted delivery across the blood–brain barrier (BBB), tissue regeneration, high‐specificity cancer cures, molecular‐level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High‐specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs‐based high‐specificity targeted drug delivery via application of d.c. and a.c. magnetic fields.

    This article is categorized under:

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

    Therapeutic Approaches and Drug Discovery > Emerging Technologies

     
    more » « less
  3. Abstract

    In vitro culture models of the blood‐brain barrier (BBB) provide a useful platform to test the mechanisms of cellular infiltration and pathogen dissemination into the central nervous system (CNS). We present an in vitro mouse model of the BBB to testMycobacterium tuberculosis(Mtb) dissemination across brain endothelial cells. One‐third of the global population is infected with Mtb, and in 1%‐2% of cases bacteria invade the CNS through a largely unknown process. The “Trojan horse” theory supports the role of a cellular carrier that engulfs bacteria and carries them to the brain without being recognized. We present for the first time a protocol for an in vitro BBB‐granuloma model that supports the Trojan horse mechanism of Mtb dissemination into the CNS. Handling of bacterial cultures, in vivo and in vitro infections, isolation of primary astroglial and endothelial cells, and assembly of the in vitro BBB model is presented. These techniques can be used to analyze the interaction of adaptive and innate immune system cells with brain endothelial cells, cellular transmigration, BBB morphological and functional changes, and methods of bacterial dissemination. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Isolation of primary mouse brain astrocytes and endothelial cells

    Basic Protocol 2: Isolation of primary mouse bone marrow–derived dendritic cells

    Support Protocol 1: Validation of dendritic cell purity by flow cytometry

    Basic Protocol 3: Isolation of primary mouse peripheral blood mononuclear cells

    Support Protocol 2: Isolation of primary mouse spleen cells

    Support Protocol 3: Purification and validation of CD4+ T cells from PBMCs and spleen cells

    Basic Protocol 4: Isolation of liver granuloma supernatant and determination of organ load

    Support Protocol 4: In vivo and in vitro infection with mycobacteria

    Basic Protocol 5: Assembly of the BBB co‐culture model

    Basic Protocol 6: Assembly of the combined in vitro granuloma and BBB model

     
    more » « less
  4. Abstract

    Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as “neuroHIV”. Herein, the development of bioinspired ionic liquid‐coated nanoparticles (IL‐NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial‐ infused cargo. Moreover, IL choline trans‐2‐hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post‐delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL‐NPs, and verifies retention of antiviral efficacy in vitro. IL‐NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti‐viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL‐NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood‐brain‐barrier (BBB).

     
    more » « less
  5. Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed. 
    more » « less