skip to main content


Title: Micropropagation of Rare Scutellaria havanensis Jacq. and Preliminary Studies on Antioxidant Capacity and Anti-Cancer Potential
We report the development of in vitro propagation protocols through an adventitious shoot induction pathway for a rare and medicinal Scutellaria havanensis. In vitro propagation studies using nodal explants showed MS medium supplemented with 10 µM 6-Benzylaminopurine induced the highest number of adventitious shoots in a time-dependent manner. A ten-day incubation was optimum for shoot bud induction as longer exposures resulted in hyperhydricity of the explants and shoots induced. We also report preliminary evidence of Agrobacterium tumefaciens EHA105-mediated gene transfer transiently expressing the green fluorescent protein in this species. Transformation studies exhibited amenability of various explant tissues, internode being the most receptive. As the plant has medicinal value, research was carried out to evaluate its potential antioxidant capacity and the efficacy of methanolic leaf extracts in curbing the viability of human colorectal cancer cell line HCT116. Comparative total polyphenol and flavonoid content measurement of fresh and air-dried leaf extract revealed that the fresh leaf extracts contain higher total polyphenol and flavonoid content. The HCT 116 cell viability was assessed by colorimetric assay using a 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide, showed a steady growth inhibition after 24 h of incubation. Scanning electron microscopy of leaf surface revealed a high density of glandular and non-glandular trichomes. This research provides a basis for the conservation of this rare plant and future phytochemical screening and clinical research.  more » « less
Award ID(s):
1928792
NSF-PAR ID:
10343354
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
19
ISSN:
1420-3049
Page Range / eLocation ID:
5813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In clonal plants, persistent rhizomes can serve multiple purposes, including resource storage, modulation of heterogeneous resource distributions, maintenance of bud banks and promotion of recovery from disturbance. Clonal plants are commonly long‐lived and, in temperate zones, often exhibit organ preformation. Thus, investigations of how the timing of disturbance to the rhizome affects plant performance must occur over multiple growing seasons, but these types of studies are rare.

    We conducted a field experiment to examine how the persistent rhizome supports the existing shoot, new ramet production and recovery from damage using mayapplePodophyllum peltatum(Berberidaceae), a common herbaceous perennial of low‐light forest understories in Eastern North America. Mayapple maintains a long‐lived rhizome and exhibits a developmentally programmed seasonal pattern of resource transport and new ramet initiation. We varied both the position and timing of rhizome severing in rhizome systems with terminal sexual or vegetative shoots, and tracked plants for 2 years following severing.

    The location and timing of severing affected both plant persistence (production of new shoots) and performance (leaf area), with effects differing for new shoots that developed at the front versus the back of the rhizome system. Across years, severing location and past years’ shoot size influenced plant persistence and performance, while the effect of timing of severing diminished. Initial sexual status had little effect on rhizome system response that was not accounted for by initial leaf area. Severing generally led to the establishment of two independent rhizome systems. Relative to unmanipulated control systems, these two systems had more total leaf area, but less average leaf area per system.

    Synthesis. Our results point to the rhizome as a resource integrator that affects plant responses to disturbance immediately following damage and in subsequent growing seasons. Rhizome bud age and/or subtending rhizome size, and developmental programme influence responses to disturbance. While the effects of experimental disturbance on plant performance decreased 2 years after disturbance, further long‐term investigation is needed to fully understand the demographic consequences of damage to persistent rhizomes.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Summary

    Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports inOryza sativa(rice) identified a role forDEEPER ROOTING 1(DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water‐limited conditions. Here we found thatDRO1andDRO1‐related genes are present across diverse plant phyla, and fall within theIGTgene family. TheIGTfamily also includesTAC1andLAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development,DRO1homologs in Arabidopsis and peach showed root‐specific expression. Promoter–reporter constructs revealed thatAtDRO1is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation ofAtDRO1led to more horizontal lateral root angles. Overexpression ofAtDRO1under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C‐terminalEAR‐like motif found inIGTgenes was required for these ectopic phenotypes. Overexpression ofPpeDRO1inPrunus domestica(plum) led to deeper‐rooting phenotypes. Collectively, these data indicate a potential application forDRO1‐related genes to alter root architecture for drought avoidance and improved resource use.

     
    more » « less
  3. Abstract Background and Aims

    An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed.

    Methods

    We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs).

    Key Results

    For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85).

    Conclusions

    Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.

     
    more » « less
  4. null (Ed.)
    Xerophyllum asphodeloides (Xerophyllaceae), known as eastern turkeybeard, is an herbaceous perennial found in eastern North America. Due to decline and destruction of its habitat, several states rank X. asphodeloides as “Imperiled” to “Critically Imperiled”. Protocols for seed cryopreservation, in vitro germination, sustainable shoot micropropagation, shoot establishment in soil, and seed germination are presented. Seeds from two tested sources were viable after 20 months of cryopreservation. Germination of isolated embryos in vitro was necessary to overcome strong seed dormancy. Shoot multiplication and elongation occurred on ½ MS medium without PGRs. Shoots rooted in vitro without PGRs or with 0.5 mg/L NAA or after NAA rooting powder treatment and placement in potting mix. When planted in wet, peaty soil mixes, shoots grew for two months and then declined. When planted in a drier planting mix containing aged bark, most plants continued growth. In the field, plant survival was 73% after three growing seasons. Safeguarding this species both ex situ and in situ is possible and offers a successful approach to conservation. Whole seeds germinated after double dormancy was overcome by incubation under warm moist conditions for 12 weeks followed by 12 weeks cold at 4 °C and then warm. 
    more » « less
  5. Abstract

    The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought‐stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform‐enriched mutants versus wild‐type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water‐permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform‐enriched tissues. In particular, our findings suggest that an increase in 9,10‐epoxy‐18‐hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress‐induced leaf rolling observed in grasses.

     
    more » « less