Abstract Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix‐assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On‐tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N‐trimethyl‐2‐(piperazin‐1‐yl)ethan‐1‐aminium iodide to chemically modify short‐chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization.
more »
« less
Enhancing Metabolite Coverage for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Through Multiple On-Tissue Chemical Derivatizations
The ability to study and visualize metabolites on a cellular and sub-cellular level is important for gaining insights into biological pathways and metabolism of multicellular organisms. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool for metabolomics experiments due to its high sensitivity and small sampling size. The spatial resolution in MALDI-MSI is mainly limited by the number of molecules available in a small sampling size. When the sampling size is low enough to achieve cellular or subcellular spatial resolution, signal intensity is sacrificed making poorly ionized metabolites difficult to detect. To overcome this limitation, on-tissue chemical derivatization reactions have been used to enhance the desorption/ionization efficiency of selected classes of compounds by adding a functional group with a permanent positive charge or one that can be easily ionized. By utilizing several chemical derivatizations in parallel, metabolite coverage can be drastically improved. This chapter outlines methodology for sample preparation and data analysis for on-tissue chemical derivatization using various derivatization reagents.
more »
« less
- Award ID(s):
- 1905335
- PAR ID:
- 10343422
- Editor(s):
- Lee, YJ
- Date Published:
- Journal Name:
- Methods in molecular biology
- Volume:
- 2437
- ISSN:
- 1064-3745
- Page Range / eLocation ID:
- 197-213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Applying solutions of matrix or derivatization agent via microdroplets is a common sample preparation technique for matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) experiments. Mobilized nebulizer sprayers are commonly used to create a homogeneous matrix or reagent layer across large surfaces. Electrospray devices have also been used to produce microdroplets for the same purpose but are rarely used for large tissues due to their immobility. Herein, we present a movable electrospray device that can be used for large tissue sample preparation by a simple modification to an automatic commercial nebulizer device. As demonstrated for on-tissue chemical derivatization (OTCD) with Girard's reagent T using a mimetic tissue model, the sprayer has the additional benefit of being able to investigate reaction acceleration in OTCD when comparing electrostatically charged spray to electrostatically neutral spray. Finally, MALDI-MSI of fatty alde-hydes is successfully demonstrated in rat brain tissues using this device for both OTCD and matrix application.more » « less
-
Abstract Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix‐assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI‐MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix‐free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra‐trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA‐LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA‐LDI‐MSI.more » « less
-
Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolomics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI matrix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representative analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight metabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 µm) while maintaining broad coverage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, we have found >40 low molecular weight metabolites in human kidney tissue such as arginic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. Future work will involve further exploring metabolomic profiles of human kidneys as a function of age, gender, and ethnicity.more » « less
-
Mass spectrometry is a powerful analytical technique used at every stage of the pharmaceutical research process. A specialized subset of this technique, mass spectrometry imaging (MSI) has emerged as an important technique for determining the spatial distribution of drugs in biological samples. Despite the importance of MSI, its quantitative capabilities are still limited due to the complexity of biological samples and the lack of separation prior to analysis. This makes the simultaneous quantification and visualization of analytes challenging. Several techniques have been developed to address this challenge and enable quantitative MSI. One of these techniques is the mimetic tissue model, which involves the incorporation of an analyte of interest into tissue homogenates at several concentrations. A calibration curve that accounts for signal suppression by the complex biological matrix is then created by measuring the signal of the analyte in the series of tissue homogenates. Herein, we use the mimetic tissue model on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring (MRM) mode to demonstrate the quantitative abilities of nanospray desorption electrospray ionization (nano-DESI) and compare these results with those obtained using atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI). For the tested compounds, our findings indicate that nano-DESI achieves lower standard deviations than AP-MALDI which contributes to nano-DESI also achieving lower limits of detection (LOD) for the analytes studied. Additionally, we discuss the limitations of the mimetic tissue model in the quantification of certain analytes and the challenges involved with the implementation of the model.more » « less