skip to main content


Search for: All records

Award ID contains: 2019805

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Objective

    This review and synthesis examines approaches for measuring and assessing team coordination dynamics (TCD). The authors advance a system typology for classifying TCD approaches and their applications for increasing levels of dynamic complexity.

    Background

    There is an increasing focus on how teams adapt their coordination in response to changing and uncertain operational conditions. Understanding coordination is significant because poor coordination is associated with maladaptive responses, whereas adaptive coordination is associated with effective responses. This issue has been met with TCD approaches that handle increasing complexity in the types of TCD teams exhibit.

    Method

    A three-level system typology of TCD approaches for increasing dynamic complexity is provided, with examples of research at each level. For System I TCD, team states converge toward a stable, fixed-point attractor. For System II TCD, team states are periodic, which can appear complex, yet are regular and relatively stable. In System III TCD, teams can exhibit periodic patterns, but those patterns change continuously to maintain effectiveness.

    Results

    System I and System II are applicable to TCD with known or discoverable behavioral attractors that are stationary across mid-to long-range timescales. System III TCD is the most generalizable to dynamic environments with high requirements for adaptive coordination across a range of timescales.

    Conclusion

    We outline current challenges for TCD and next steps in this burgeoning field of research.

    Application

    System III approaches are becoming widespread, as they are generalizable to time- and/or scale-varying TCD and multimodal analyses. Recommendations for deploying TCD in team settings are provided.

     
    more » « less
  3. Free, publicly-accessible full text available March 18, 2025
  4. Free, publicly-accessible full text available February 14, 2025
  5. Free, publicly-accessible full text available January 1, 2025
  6. Free, publicly-accessible full text available January 1, 2025
  7. Free, publicly-accessible full text available December 1, 2024
  8. Resilient teams overcome sudden, dynamic changes by enacting rapid, adaptive responses that maintain system effectiveness. We analyzed two experiments on human-autonomy teams (HATs) operating a simulated remotely piloted aircraft system (RPAS) and correlated dynamical measures of resilience with measures of team performance. Across both experiments, HATs experienced automation and autonomy failures, using a Wizard of Oz paradigm. Team performance was measured in multiple ways, using a mission-level performance score, a target processing efficiency score, a failure overcome score, and a ground truth resilience score. Novel dynamical systems metrics of resilience measured the timing of system reorganization in response to failures across RPAS layers, including vehicle, controls, communications layers, and the system overall. Time to achieve extreme values of reorganization and novelty of reorganization were consistently correlated with target processing efficiency and ground truth resilience across both studies. Correlations with mission-level performance and the overcome score were apparent but less consistent. Across both studies, teams displayed greater system reorganization during failures compared to routine task conditions. The second experiment revealed differential effects of team training focused on coordination coaching and trust calibration. These results inform the measurement and training of resilience in HATs using objective, real-time resilience analysis.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  9. Free, publicly-accessible full text available October 9, 2024