Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goalmore »
Creating Biologically Inspired Design Units for High School Engineering Courses
This innovative practice work in progress paper presents the Biologically Inspired Design for Engineering Education (BTRDEE) project, to create socially relevant, accessible, highly-contextualized biologically inspired design experiences that can be disseminated to high school audiences engineering audiences in Georgia and nationally. Curriculum units arc 6-10 weeks in duration and will meet many standards for high school engineering courses in Georgia. There will be three curriculum units (one for each engineering course in the 3-course pathway), each building skills in engineering design and specific skills for BID. Currently in its second year, BIRDEE has developed its first unit of curriculum and has hosted its first professional development with 4 pilot teachers in the summer of 2020. The BIRDEE curriculum situates challenges within socially relevant contexts and provides cutting-edge biological scenarios to ignite creative and humanistic engineering experiences to 1) drive greaterengagement in engineering, particularly among women, 2) improve student engineering skills, especially problem definition and ideation skills, and 3) increase students awareness of the connection and impacts between the engineered and living worlds.
This paper describes the motivation for the BIRDEE project, the learning goals for the curriculum, and a description of the first unit. We provide reflections and feedback from teacher more »
- Award ID(s):
- 1907906
- Publication Date:
- NSF-PAR ID:
- 10343590
- Journal Name:
- Institute of Electrical and Electronics Engineers Frontiers in Engineering Educario
- Page Range or eLocation-ID:
- 1 to 4
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This innovative practice work in progress paper presents Biologically inspired design (BID) to transfer design principles identified in nature to human-centered design problems. The Biologically Inspired Design for Engineering Education (BIRDEE) program uses biologically inspired design to teach high school engineering in a way that uniquely engages students in the natural world. For high school students, identifying natural systems’ analogues for human design problems can be challenging. Furthermore, it is often the case that students focus on and transfer superficial structures, rather than underlying design principles. Based on the Structure-Behavior-Function (SBF) design ontology, we developed a modified cognitive scaffold called Structure- Function-Mechanism (SFM) to assist students and teachers with identifying functionally similar biological analogies and identifying and transferring design principles. In this paper we describe SFM and its importance in BID and our observations from teaching SFM to high school teachers during a multi-week professional development workshop in the summer of 2020. Based on teachers’ work artifacts, transcriptions of discussions, and focus groups, we highlight the challenges of teaching SFM and our plans to scaffold this important concept for students and teachers alike.
-
To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammondmore »
-
K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop duringmore »
-
Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimonemore »