skip to main content

Title: Strength can be controlled by edge dislocations in refractory high-entropy alloys
Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration.
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature,Tbreak, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay belowTbreak. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and show how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations.

  2. The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys were composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively.
  3. Abstract Simultaneously enhancing strength and ductility of metals and alloys has been a tremendous challenge. Here, we investigate a CoCuFeNiPd high-entropy alloy (HEA), using a combination of Monte Carlo method, molecular dynamic simulation, and density-functional theory calculation. Our results show that this HEA is energetically favorable to undergo short-range ordering (SRO), and the SRO leads to a pseudo-composite microstructure, which surprisingly enhances both the ultimate strength and ductility. The SRO-induced composite microstructure consists of three categories of clusters: face-center-cubic-preferred (FCCP) clusters, indifferent clusters, and body-center-cubic-preferred (BCCP) clusters, with the indifferent clusters playing the role of the matrix, the FCCP clusters serving as hard fillers to enhance the strength, while the BCCP clusters acting as soft fillers to increase the ductility. Our work highlights the importance of SRO in influencing the mechanical properties of HEAs and presents a fascinating route for designing HEAs to achieve superior mechanical properties.
  4. Abstract

    The interactions between solute atoms and crystalline defects such as vacancies, dislocations, and grain boundaries are essential in determining alloy properties. Here we present a general linear correlation between two descriptors of local electronic structures and the solute-defect interaction energies in binary alloys of body-centered-cubic (bcc) refractory metals (such as W and Ta) with transition-metal substitutional solutes. One electronic descriptor is the bimodality of thed-orbital local density of states for a matrix atom at the substitutional site, and the other is related to the hybridization strength between the valancesp-andd-bands for the same matrix atom. For a particular pair of solute-matrix elements, this linear correlation is valid independent of types of defects and the locations of substitutional sites. These results provide the possibility to apply local electronic descriptors for quantitative and efficient predictions on the solute-defect interactions and defect properties in alloys.

  5. Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.