skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1809640

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Laser powder-bed fusion (L-PBF) additive manufacturing presents ample opportunities to produce net-shape parts. The complex laser-powder interactions result in high cooling rates that often lead to unique microstructures and excellent mechanical properties. Refractory high-entropy alloys show great potential for high-temperature applications but are notoriously difficult to process by additive processes due to their sensitivity to cracking and defects, such as un-melted powders and keyholes. Here, we present a method based on a normalized model-based processing diagram to achieve a nearly defect-free TiZrNbTa alloy via in-situ alloying of elemental powders during L-PBF. Compared to its as-cast counterpart, the as-printed TiZrNbTa exhibits comparable mechanical properties but with enhanced elastic isotropy. This method has good potential for other refractory alloy systems based on in-situ alloying of elemental powders, thereby creating new opportunities to rapidly expand the collection of processable refractory materials via L-PBF. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The degree of short-range order (SRO) can influence the physical and mechanical properties of refractory multi-principal element alloys (RMPEAs). Here, the effect of SRO degree on the atomic configuration and properties of the equiatomic TiTaZr RMPEA is investigated using the first-principles calculations. Their key roles on the lattice parameters, binding energy, elastic properties, electronic structure, and stacking fault energy (SFE) are analyzed. The results show the degree of SRO has a significant effect on the physical and mechanical properties of TiTaZr. During the SRO degree increasing in TiTaZr lattice, the low SRO degree exacerbates the lattice distortion and the high SRO degree reduces the lattice distortion. The high degree of SRO improves the binding energy and elastic stiffness of the TiTaZr. By analyzing the change in charge density, this change is caused by the atomic bias generated during the formation of the SRO, which leading to a change in charge-density thereby affecting the metal bond polarity and inter-atomic forces. The high SRO degree also reduces SFE, which means the capability of plastic deformation of the TiTaZr is enhanced. 
    more » « less
  3. Abstract Manufacturing and investigating metallic‐glass‐fiber‐reinforced epoxies is an important new attempt to present their potential to contribute to the aviation industry. In order to explore the energy absorption in novel CoFeSiB metallic‐glass‐fiber/epoxy resin composites, CoFeSiB/epoxy resin composite cylinders with different fiber volume fractions were prepared by a hot‐pressing method. The amorphism of the metal fibers was analyzed using x‐ray diffraction. The quasi‐static compression tests were performed on different fiber oriented samples with a diameter of 3.6 mm and a height of 7.2 mm. The sample with the fiber orientation [0°/90°] has a higher energy absorption capacity, compared to the one with the fiber orientation [0°/0°]. The dynamic‐ compression tests were performed on the [0°/0°] samples with a diameter of 3 mm and height of 6 mm at different air pressures. The compression fracture surfaces were examined by scanning electron microscope. Then the energy absorption mechanism of the composites was investigated. This study is of great significance for the energy absorption in amorphous metal fiber/epoxy composites. 
    more » « less
  4. Abstract Severe lattice distortion is a prominent feature of high-entropy alloys (HEAs) considered a reason for many of those alloys’ properties. Nevertheless, accurate characterizations of lattice distortion are still scarce to only cover a tiny fraction of HEA’s giant composition space due to the expensive experimental or computational costs. Here we present a physics-informed statistical model to efficiently produce high-throughput lattice distortion predictions for refractory non-dilute/high-entropy alloys (RHEAs) in a 10-element composition space. The model offers improved accuracy over conventional methods for fast estimates of lattice distortion by making predictions based on physical properties of interatomic bonding rather than atomic size mismatch of pure elements. The modeling of lattice distortion also implements a predictive model for yield strengths of RHEAs validated by various sets of experimental data. Combining our previous model on intrinsic ductility, a data mining design framework is demonstrated for efficient exploration of strong and ductile single-phase RHEAs. 
    more » « less
  5. Abstract The exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models. Two samples, one homogenized and one heat-treated, are observed. In both samples, results reveal two types of short-range-order inside nanoclusters that minimize the Cr–Cr nearest neighbors (L12) or segregate Cr on alternating close-packed planes (L11). The L11is predominant in the homogenized sample, while the L12formation is promoted by heat-treatment, with the latter being accompanied by a dramatic change in dislocation-slip behavior. These findings uncover short-range order and the resulted chemical heterogeneities behind the mechanical strength in CrCoNi, providing general opportunities for atomistic-structure study in concentrated alloys for the design of strong and ductile materials. 
    more » « less
  6. Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature,Tbreak, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay belowTbreak. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and show how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations. 
    more » « less
  7. Abstract Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength. 
    more » « less
  8. Abstract Multicomponent high‐entropy alloys (HEAs) can be tuned to a simple phase with some unique alloy characteristics. HEAs with body‐centered‐cubic (BCC) or hexagonal‐close‐packed (HCP) structures are proven to possess high strength and hardness but low ductility. The faced‐centered‐cubic (FCC) HEAs present considerable ductility, excellent corrosion and radiation resistance. However, their strengths are relatively low. Therefore, the strategy of strengthening the ductile FCC matrix phase is usually adopted to design HEAs with excellent performance. Among various strengthening methods, precipitation strengthening plays a dazzling role since the characteristics of multiple principal elements and slow diffusion effect of elements in HEAs provide a chance to form fine and stable nanoscale precipitates, pushing the strengths of the alloys to new high levels. This paper summarizes and review the recent progress in nanoprecipitate‐strengthened HEAs and their strengthening mechanisms. The alloy‐design strategies and control of the nanoscale precipitates in HEAs are highlighted. The future works on the related aspects are outlined. 
    more » « less
  9. Abstract Severe distortion is one of the four core effects in single‐phase high‐entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic‐scale lattice distortion and macro‐scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single‐phase solid‐solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single‐phase body‐centered‐cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed. Compared to the previously developed single‐phase NbTaTiV HEA, the NbTaTiVZr HEA shows a higher yield strength and comparable plasticity. The increase in yield strength is systematically and quantitatively studied in terms of lattice distortion using a theoretical model, first‐principles calculations, synchrotron X‐ray/neutron diffraction, atom‐probe tomography, and scanning transmission electron microscopy techniques. These results demonstrate that severe lattice distortion is a core factor for developing high strengths in refractory HEAs. 
    more » « less
  10. Free, publicly-accessible full text available December 1, 2025