skip to main content


Title: Precision glycerine jelly swab for removing pollen from small and fragile insect specimens
1. Historical datasets can establish a critical baseline of plant–animal interactions for understanding contemporary interactions in the context of global change. Pollen is often incidentally preserved on animals in natural history collections. Techniques for removing pollen from insects have largely been developed for fresh insect specimens or historical specimens with large amounts of pollen on specialized structures. However, many key pollinating insects do not have these specialized structures and thus, there is a need for a method to extract pollen from these small and fragile insects. 2. Here, we propose a precision glycerine jelly swab tool to allow for the precise removal of pollen from old, small and fragile insect specimens. We use this tool to remove pollen from five families of insects collected in the late 1970s. Additionally, we compare our method with four previously published techniques for removing pollen from pinned contemporary specimens. 3. We show the functionality of the precision glycerine jelly swab for removing small quantities of pollen across insect families. We found that across the five methods, all removed pollen; yet, it was clear that some are better suited for fragile specimens. In particular, the traditional glycerine jelly swab and the precision glycerine jelly swabs both performed well for removing pollen from bee faces. The shaking wash resulted in specimen fracture and residue left behind, the ethanol rinses left setae matted, and the glycerol swabbing left residue on the specimen. Additionally, we present photographs documenting the effects of these methods on pinned honey bee specimens. 4. The precision glycerine jelly swab opens up opportunities to sample pollen from a variety of insects in natural history collections. These pollen samples can be incorporated into downstream analyses for pollen identification either via mi-croscopy or DNA sequencing, and the resulting plant–insect interaction data can establish historical baselines for contemporary comparison. Beyond our ap-plication of this method to pollen on insects, this precision glycerine jelly swab tool could be used to explore pollen placement specialization or to sample bryo-phyte, fungal and tree fern spores dispersing on animals.  more » « less
Award ID(s):
2011005
NSF-PAR ID:
10343710
Author(s) / Creator(s):
; ;
Editor(s):
Natalie Cooper
Date Published:
Journal Name:
Methods in Ecology and Evolution
ISSN:
2041-210X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Native bee species in the United States provide invaluable pollination services. Concerns about native bee declines are growing, and there are calls for a national monitoring program. Documenting species ranges at ecologically meaningful scales through coverage completeness analysis is a fundamental step to track bees from species to communities. It may take decades before all existing bee specimens are digitized, so projections are needed now to focus future research and management efforts. From 1.923 million records, we created range maps for nearly 88% (3158 species) of bee species in the contiguous United States, provided the first analysis of inventory completeness for digitized specimens of a major insect clade, and perhaps most important, estimated spatial completeness accounting for all known bee specimens in USA collections, including undigitized bee specimens. Completeness analyses were very low (3–37%) across four examined spatial resolutions when using the currently available bee specimen records. Adding a subset of observations from community science data sources did not significantly increase completeness, and adding a projected 4.7 million undigitized specimens increased completeness by only an additional 12–13%. Assessments of data, including projected specimen records, indicate persistent taxonomic and geographic deficiencies. In conjunction with expedited digitization, new inventories that integrate community science data with specimen‐based documentation will be required to close these gaps. A combined effort involving both strategic inventories and accelerated digitization campaigns is needed for a more complete understanding of USA bee distributions. 
    more » « less
  2. Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world.

     
    more » « less
  3. Abstract

    Natural history collections play a crucial role in biodiversity research, and museum specimens are increasingly being incorporated into modern genetics‐based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin‐fixed squamates and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol‐preserved museum specimens. Alongside sequencing of “fresh” specimens preserved in >95% ethanol and stored at −80°C, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70%–80% ethanol and stored at room temperature, the standard for such ethanol‐preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from six to 495 loci. We successfully demonstrate the inclusion of historical ethanol‐preserved museum specimens in modern sequence capture phylogenomic studies, show a high frequency of variant bases at the species and population levels, and from off‐target reads successfully recover multiple loci traditionally sequenced in multilocus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol‐preserved museum specimens held in collections worldwide.

     
    more » « less
  4. Abstract

    Although they are a valuable source of specimens, insect natural history collections continue to be under‐utilized in molecular systematics, mostly due to difficulties in obtaining DNA sequences. Old specimens or specimens stored under suboptimal conditions are intractable for traditional Sanger sequencing. In this study we use an inexpensive hybrid capture with in‐house generated baits to retrieve commonly utilized ribosomal and mitochondrial loci from old museum specimens and combine them with a Sanger‐generated dataset comprising recently collected material. We focus on theCorixideagenus group (Schizopteridae), which comprises rarely collected, small (1–2 mm) and primarily tropical insects of which onlyc. 10–20% of the species have been described. A molecular phylogeny is needed to resolve relationships and revise the genus‐level classification to correctly place thec. 150 yet to be described species. Applying this approach, we constructed a dataset, containing 101 taxa, 11 of which were preserved in low‐percentage ethanol, 48 are dry and point‐mounted, and 40 are > 20 years old at DNA extraction. The obtained data proved sufficient for reconstructing a well‐supported phylogeny withc. 50% of the predicted diversity, and for the oldest successfully sequenced specimen (95 years) to be unambiguously placed in that phylogeny. We confirmed monophyly of theCorixideagenus group, showed paraphyly of the genusCorixidea, and recovered nine well‐supported clades within the group. Ancestral character states of selected morphological features were inferred and used to re‐examine primary homology hypotheses and inform an upcoming taxonomic revision.

     
    more » « less
  5. Abstract

    Compared to non‐urban environments, cities host ecological communities with altered taxonomic diversity and functional trait composition. However, we know little about how these urban changes take shape over time. Using historical bee (Apoidea: Anthophila) museum specimens supplemented with online repositories and researcher collections, we investigated whether bee species richness tracked urban and human population growth over the past 118 years. We also determined which species were no longer collected, whether those species shared certain traits, and if collector behavior changed over time. We focused on Wake County, North Carolina, United States where human population size has increased over 16 times over the last century along with the urban area within its largest city, Raleigh, which has increased over four times. We estimated bee species richness with occupancy models, and rarefaction and extrapolation curves to account for imperfect detection and sample coverage. To determine if bee traits correlated with when species were collected, we compiled information on native status, nesting habits, diet breadth, and sociality. We used non‐metric multidimensional scaling to determine if individual collectors contributed different bee assemblages over time. In total, there were 328 species collected in Wake County. We found that although bee species richness varied, there was no clear trend in bee species richness over time. However, recent collections (since 2003) were missing 195 species, and there was a shift in trait composition, particularly lost species were below‐ground nesters. The top collectors in the dataset differed in how often they collected bee species, but this was not consistent between historic and contemporary time periods; some contemporary collectors grouped closer together than others, potentially due to focusing on urban habitats. Use of historical collections and complimentary analyses can fill knowledge gaps to help understand temporal patterns of species richness in taxonomic groups that may not have planned long‐term data.

     
    more » « less