skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Completeness analysis for over 3000 United States bee species identifies persistent data gap
Native bee species in the United States provide invaluable pollination services. Concerns about native bee declines are growing, and there are calls for a national monitoring program. Documenting species ranges at ecologically meaningful scales through coverage completeness analysis is a fundamental step to track bees from species to communities. It may take decades before all existing bee specimens are digitized, so projections are needed now to focus future research and management efforts. From 1.923 million records, we created range maps for nearly 88% (3158 species) of bee species in the contiguous United States, provided the first analysis of inventory completeness for digitized specimens of a major insect clade, and perhaps most important, estimated spatial completeness accounting for all known bee specimens in USA collections, including undigitized bee specimens. Completeness analyses were very low (3–37%) across four examined spatial resolutions when using the currently available bee specimen records. Adding a subset of observations from community science data sources did not significantly increase completeness, and adding a projected 4.7 million undigitized specimens increased completeness by only an additional 12–13%. Assessments of data, including projected specimen records, indicate persistent taxonomic and geographic deficiencies. In conjunction with expedited digitization, new inventories that integrate community science data with specimen‐based documentation will be required to close these gaps. A combined effort involving both strategic inventories and accelerated digitization campaigns is needed for a more complete understanding of USA bee distributions.  more » « less
Award ID(s):
2216927
PAR ID:
10454101
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Ecography
Volume:
2023
Issue:
5
ISSN:
0906-7590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “vast hidden treasure trove” of biodiversity −95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation’s decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research. 
    more » « less
  2. Abstract Natural history collections are repositories of biodiversity specimens that provide critical infrastructure for studies of mammals. Over the past 3 decades, digitization of collections has opened up the temporal and spatial properties of specimens, stimulating new data sharing, use, and training across the biodiversity sciences. These digital records are the cornerstones of an “extended specimen network,” in which the diverse data derived from specimens become digital, linked, and openly accessible for science and policy. However, still missing from most digital occurrences of mammals are their morphological, reproductive, and life-history traits. Unlocking this information will advance mammalogy, establish richer faunal baselines in an era of rapid environmental change, and contextualize other types of specimen-derived information toward new knowledge and discovery. Here, we present the Ranges Digitization Network (Ranges), a community effort to digitize specimen-level traits from all terrestrial mammals of western North America, append them to digital records, publish them openly in community repositories, and make them interoperable with complimentary data streams. Ranges is a consortium of 23 institutions with an initial focus on non-marine mammal species (both native and introduced) occurring in western Canada, the western United States, and Mexico. The project will establish trait data standards and informatics workflows that can be extended to other regions, taxa, and traits. Reconnecting mammalogists, museum professionals, and researchers for a new era of collections digitization will catalyze advances in mammalogy and create a community-curated trait resource for training and engagement with global conservation initiatives. 
    more » « less
  3. Grant-supported digitization projects over the past 20 years at the Illinois Natural History Survey (INHS) have yielded over 1,000,000 occurrence records (representing over 2.7 million specimens), one of the most successful digitization efforts within the United States. However, receiving multiple grants at the cutting edge has led to numerous projects left at various stages of completeness, several relational databases, orphaned data, and specimens at various stages of curation. TaxonWorks (taxonworks.org), an integrated web-based workbench developed by the Species File Group and supported by the INHS and the National Science Foundation, has provided the digital infrastructure to unify multiple workflows, projects, databases, and even historical accession books into one easy to access, open-source platform. We demonstrate the practical utility of this platform and summarize past, present, and future efforts at the INHS towards integrating all our data within TaxonWorks. 
    more » « less
  4. Abstract Natural history collections (NHCs) are the foundation of historical baselines for assessing anthropogenic impacts on biodiversity. Along these lines, the online mobilization of specimens via digitization—the conversion of specimen data into accessible digital content—has greatly expanded the use of NHC collections across a diversity of disciplines. We broaden the current vision of digitization (Digitization 1.0)—whereby specimens are digitized within NHCs—to include new approaches that rely on digitized products rather than the physical specimen (Digitization 2.0). Digitization 2.0 builds on the data, workflows, and infrastructure produced by Digitization 1.0 to create digital-only workflows that facilitate digitization, curation, and data links, thus returning value to physical specimens by creating new layers of annotation, empowering a global community, and developing automated approaches to advance biodiversity discovery and conservation. These efforts will transform large-scale biodiversity assessments to address fundamental questions including those pertaining to critical issues of global change. 
    more » « less
  5. ABSTRACT Community or volunteer participation in research has the potential to significantly help mobilize the wealth of biodiversity and functional ecological data housed in natural history collections. Many such projects recruit community scientists to transcribe specimen label data from images; a next step is to task community scientists with conducting straightforward morphological measurements (e.g., body size) from specimen images. We investigated whether community science could be an effective approach to generating significant body size datasets from specimen images generated by museum digitization initiatives. Using the community science platform Notes from Nature, we engaged community scientists in a specimen measurement task to estimate body size (i.e., intertegular distance) from images of bee specimens. Community scientists showed high engagement and completion of this task, with each user measuring 43.6 specimens on average and self‐reporting successful measurement of 98.0% of the images. Community scientist measurements were significantly larger than measurements conducted by trained researchers, though the average measurement error was only 2.3%. These results suggest that community science participation could be an effective approach for bee body size measurement, for descriptive studies or for research questions where this degree of expected error is deemed acceptable. For larger‐bodied organisms (e.g., vertebrates), where modest measurement errors represent a smaller proportion of body size, community science approaches may be particularly effective. Methods we present here may serve as a blueprint for future projects aimed at engaging the public in biodiversity and collections‐based research efforts. 
    more » « less