skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: A Professional Development Model to Integrate Computational Thinking Into Middle School Science Through Codesigned Storylines
This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students.  more » « less
Award ID(s):
1742046
NSF-PAR ID:
10343742
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Contemporary issues in technology and teacher education
Volume:
21
Issue:
1
ISSN:
1528-5804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article describes a professional development (PD) model, the CT- Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT- Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  2. We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units. 
    more » « less
  3. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  4. Abstract

    Engineering design‐based STEM integration is one potential model to help students integrate content and practices from all of the STEM disciplines. In this study, we explored the intersection of two aspects of pre‐college STEM education: the integration of the STEM disciplines, and the NGSS practice of engaging in argument from evidence within engineering. Specifically, our research question was: While generating and justifying solutions to engineering design problems in engineering design‐based STEM integration units, what STEM content do elementary and middle school students discuss? We used naturalistic inquiry to analyze student team audio recordings from seven curricular units in order to identify the variety of STEM content present as students justified their design ideas and decisions (i.e., used evidence‐based reasoning). Within the four disciplines, fifteen STEM content categories emerged. Particularly interesting were the science and mathematics categories. All seven student teams used unit‐based science, and five used unit‐based mathematics, to support their design ideas. Five teams also applied science and/or mathematics content that was outside the scope of the units' learning objectives. Our results demonstrate that students integrated content from all four STEM disciplines when justifying engineering design ideas and solutions, thus supporting engineering design‐based STEM integration as a curricular model.

     
    more » « less
  5. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less