skip to main content


Title: Assemblies of neurons learn to classify well-separated distributions
An assembly is a large population of neurons whose synchronous firing represents a memory, concept, word, and other cognitive category. Assemblies are believed to provide a bridge between high-level cognitive phenomena and low-level neural activity. Recently, a computational system called the \emph{Assembly Calculus} (AC), with a repertoire of biologically plausible operations on assemblies, has been shown capable of simulating arbitrary space-bounded computation, but also of simulating complex cognitive phenomena such as language, reasoning, and planning. However, the mechanism whereby assemblies can mediate {\em learning} has not been known. Here we present such a mechanism, and prove rigorously that, for simple classification problems defined on distributions of labeled assemblies, a new assembly representing each class can be reliably formed in response to a few stimuli from the class; this assembly is henceforth reliably recalled in response to new stimuli from the same class. Furthermore, such class assemblies will be distinguishable as long as the respective classes are reasonably separated — for example, when they are clusters of similar assemblies, or more generally separable with margin by a linear threshold function. To prove these results, we draw on random graph theory with dynamic edge weights to estimate sequences of activated vertices, yielding strong generalizations of previous calculations and theorems in this field over the past five years. These theorems are backed up by experiments demonstrating the successful formation of assemblies which represent concept classes on synthetic data drawn from such distributions, and also on MNIST, which lends itself to classification through one assembly per digit. Seen as a learning algorithm, this mechanism is entirely online, generalizes from very few samples, and requires only mild supervision — all key attributes of learning in a model of the brain. We argue that this learning mechanism, supported by separate sensory pre-processing mechanisms for extracting attributes, such as edges or phonemes, from real world data, can be the basis of biological learning in cortex.  more » « less
Award ID(s):
2134105 2007443 1909756
NSF-PAR ID:
10343851
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Conference on Learning Theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The landscapes of many elementary, middle, and high school math classrooms have undergone major transformations over the last half-century, moving from drill-and-skill work to more conceptual reasoning and hands-on manipulative work. However, if you look at a college level calculus class you are likely to find the main difference is the professor now has a whiteboard marker in hand rather than a piece of chalk. It is possible that some student work may be done on the computer, but much of it contains the same type of repetitive skill building problems. This should seem strange given the advancements in technology that allow more freedom than ever to build connections between different representations of a concept. Several class activities have been developed using a combination of approaches, depending on the topic. Topics covered in the activities include Riemann Sums, Accumulation, Center of Mass, Volumes of Revolution (Discs, Washers, and Shells), and Volumes of Similar Cross-section. All activities use student note outlines that are either done in a whole group interactive-lecture approach, or in a group work inquiry-based approach. Some of the activities use interactive graphs designed on desmos.com and others use physical models that have been designed in OpenSCAD and 3D-printed for students to use in class. Tactile objects were developed because they should provide an advantage to students by enabling them to physically interact with the concepts being taught, deepening their involvement with the material, and providing more stimuli for the brain to encode the learning experience. Web-based activities were developed because the topics involved needed substantial changes in graphical representations (i.e. limits with Riemann Sums). Assessment techniques for each topic include online homework, exams, and online concept questions with an explanation response area. These concept questions are intended to measure students’ ability to use multiple representations in order to answer the question, and are not generally computational in nature. Students are also given surveys to rate the overall activities as well as finer grained survey questions to try and elicit student thoughts on certain aspects of the models, websites, and activity sheets. We will report on student responses to the activity surveys, looking for common themes in students’ thoughts toward specific attributes of the activities. We will also compare relevant exam question responses and online concept question results, including common themes present or absent in student reasoning. 
    more » « less
  2. For the task of image classification, researchers work arduously to develop the next state-of-the-art (SOTA) model, each bench-marking their own performance against that of their predecessors and of their peers. Unfortunately, the metric used most frequently to describe a model’s performance, average categorization accuracy, is often used in isolation. As the number of classes increases, such as in fine-grained visual categorization (FGVC), the amount of information conveyed by average accuracy alone dwindles. While its most glaring weakness is its failure to describe the model’s performance on a class-by-class basis, average accuracy also fails to describe how performance may vary from one trained model of the same architecture, on the same dataset, to another (both averaged across all categories and at the per-class level). We first demonstrate the magnitude of these variations across models and across class distributions based on attributes of the data, comparing results on different visual domains and different per-class image distributions, including long-tailed distributions and few-shot subsets. We then analyze the impact various FGVC methods have on overall and per-class variance. From this analysis, we both highlight the importance of reporting and comparing methods based on information beyond overall accuracy, as well as point out techniques that mitigate variance in FGVC results. 
    more » « less
  3. Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform node-level, class-level, and task-level adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT https://github.com/SongW-SW/TENT. 
    more » « less
  4. This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and arguably better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned features of the multiple classes are structured instead of hidden: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space, and diverse visual attributes within each class are modeled by the independent principal components within each subspace. 
    more » « less
  5. Recent research in the theory of overparametrized learning has sought to establish generalization guarantees in the interpolating regime. Such results have been established for a few common classes of methods, but so far not for ensemble methods. We devise an ensemble classification method that simultaneously interpolates the training data, and is consistent for a broad class of data distributions. To this end, we define the manifold-Hilbert kernel for data distributed on a Riemannian manifold. We prove that kernel smoothing regression and classification using the manifold-Hilbert kernel are weakly consistent in the setting of Devroye et al. [19]. For the sphere, we show that the manifold-Hilbert kernel can be realized as a weighted random partition kernel, which arises as an infinite ensemble of partition-basedclassifiers. 
    more » « less