skip to main content

Search for: All records

Award ID contains: 1909756

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An assembly is a large population of neurons whose synchronous firing represents a memory, concept, word, and other cognitive category. Assemblies are believed to provide a bridge between high-level cognitive phenomena and low-level neural activity. Recently, a computational system called the \emph{Assembly Calculus} (AC), with a repertoire of biologically plausible operations on assemblies, has been shown capable of simulating arbitrary space-bounded computation, but also of simulating complex cognitive phenomena such as language, reasoning, and planning. However, the mechanism whereby assemblies can mediate {\em learning} has not been known. Here we present such a mechanism, and prove rigorously that, for simple classification problems defined on distributions of labeled assemblies, a new assembly representing each class can be reliably formed in response to a few stimuli from the class; this assembly is henceforth reliably recalled in response to new stimuli from the same class. Furthermore, such class assemblies will be distinguishable as long as the respective classes are reasonably separated — for example, when they are clusters of similar assemblies, or more generally separable with margin by a linear threshold function. To prove these results, we draw on random graph theory with dynamic edge weights to estimate sequences of activated vertices, yielding strong generalizations of previous calculations and theorems in this field over the past five years. These theorems are backed up by experiments demonstrating the successful formation of assemblies which represent concept classes on synthetic data drawn from such distributions, and also on MNIST, which lends itself to classification through one assembly per digit. Seen as a learning algorithm, this mechanism is entirely online, generalizes from very few samples, and requires only mild supervision — all key attributes of learning in a model of the brain. We argue that this learning mechanism, supported by separate sensory pre-processing mechanisms for extracting attributes, such as edges or phonemes, from real world data, can be the basis of biological learning in cortex. 
    more » « less
  2. The success of gradient descent in ML and especially for learning neural networks is remarkable and robust. In the context of how the brain learns, one aspect of gradient descent that appears biologically difficult to realize (if not implausible) is that its updates rely on feedback from later layers to earlier layers through the same connections. Such bidirected links are relatively few in brain networks, and even when reciprocal connections exist, they may not be equi-weighted. Random Feedback Alignment (Lillicrap et al., 2016), where the backward weights are random and fixed, has been proposed as a bio-plausible alternative and found to be effective empirically. We investigate how and when feedback alignment (FA) works, focusing on one of the most basic problems with layered structure n×m, the goal is to find a low rank factorization Zn×rWr×m that minimizes the error ∥ZW−Y∥F. Gradient descent solves this problem optimally. We show that FA finds the optimal solution when r≥rank(Y). We also shed light on how FA works. It is observed empirically that the forward weight matrices and (random) feedback matrices come closer during FA updates. Our analysis rigorously derives this phenomenon and shows how it facilitates convergence of FA*, a closely related variant of FA. We also show that FA can be far from optimal when r more » « less
  3. Our expanding understanding of the brain at the level of neurons and synapses, and the level of cognitive phenomena such as language, leaves a formidable gap between these two scales. Here we introduce a computational system which promises to bridge this gap: the Assembly Calculus. It encompasses operations on assemblies of neurons, such as project, associate, and merge, which appear to be implicated in cognitive phenomena, and can be shown, analytically as well as through simulations, to be plausibly realizable at the level of neurons and synapses. We demonstrate the reach of this system by proposing a brain architecture for syntactic processing in the production of language, compatible with recent experimental results. Abstract Assemblies are large populations of neurons believed to imprint memories, concepts, words, and other cognitive information. We identify a repertoire of operations on assemblies. These operations correspond to properties of assemblies observed in experiments, and can be shown, analytically and through simulations, to be realizable by generic, randomly connected populations of neurons with Hebbian plasticity and inhibition. Assemblies and their operations constitute a computational model of the brain which we call the Assembly Calculus, occupying a level of detail intermediate between the level of spiking neurons and synapses and that of the whole brain. The resulting computational system can be shown, under assumptions, to be, in principle, capable of carrying out arbitrary computations. We hypothesize that something like it may underlie higher human cognitive functions such as reasoning, planning, and language. In particular, we propose a plausible brain architecture based on assemblies for implementing the syntactic processing of language in cortex, which is consistent with recent experimental results. 
    more » « less