skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mirror Langevin Algorithm Converges with Vanishing Bias
The technique of modifying the geometry of a problem from Euclidean to Hessian metric has proved to be quite effective in optimization, and has been the subject of study for sampling. The Mirror Langevin Diffusion (MLD) is a sampling analogue of mirror flow in continuous time, and it has nice convergence properties under log-Sobolev or Poincare inequalities relative to the Hessian metric. In discrete time, a simple discretization of MLD is the Mirror Langevin Algorithm (MLA), which was shown to have a biased convergence guarantee with a non-vanishing bias term (does not go to zero as step size goes to zero). This raised the question of whether we need a better analysis or a better discretization to achieve a vanishing bias. Here we study the Mirror Langevin Algorithm and show it indeed has a vanishing bias. We apply mean-square analysis to show the mixing time bound for MLA under the modified self-concordance condition.  more » « less
Award ID(s):
2007443 2106444
PAR ID:
10343855
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Algorithmic Learning Theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a direct (primal only) derivation of Mirror Descent as a “partial” discretization of gradient flow on a Riemannian manifold where the metric tensor is the Hessian of the Mirror Descent potential function. We contrast this discretization to Natural Gradient Descent, which is obtained by a “full” forward Euler discretization. This view helps shed light on the relationship between the methods and allows generalizing Mirror Descent to any Riemannian geometry in Rd, even when the metric tensor is not a Hessian, and thus there is no “dual.” 
    more » « less
  2. Abstract We introduce a novel geometry-informed irreversible perturbation that accelerates convergence of the Langevin algorithm for Bayesian computation. It is well documented that there exist perturbations to the Langevin dynamics that preserve its invariant measure while accelerating its convergence. Irreversible perturbations and reversible perturbations (such as Riemannian manifold Langevin dynamics (RMLD)) have separately been shown to improve the performance of Langevin samplers. We consider these two perturbations simultaneously by presenting a novel form of irreversible perturbation for RMLD that is informed by the underlying geometry. Through numerical examples, we show that this new irreversible perturbation can improve estimation performance over irreversible perturbations that do not take the geometry into account. Moreover we demonstrate that irreversible perturbations generally can be implemented in conjunction with the stochastic gradient version of the Langevin algorithm. Lastly, while continuous-time irreversible perturbations cannot impair the performance of a Langevin estimator, the situation can sometimes be more complicated when discretization is considered. To this end, we describe a discrete-time example in which irreversibility increases both the bias and variance of the resulting estimator. 
    more » « less
  3. Abstract When implementing Markov Chain Monte Carlo (MCMC) algorithms, perturbation caused by numerical errors is sometimes inevitable. This paper studies how the perturbation of MCMC affects the convergence speed and approximation accuracy. Our results show that when the original Markov chain converges to stationarity fast enough and the perturbed transition kernel is a good approximation to the original transition kernel, the corresponding perturbed sampler has fast convergence speed and high approximation accuracy as well. Our convergence analysis is conducted under either the Wasserstein metric or the$$\chi^2$$metric, both are widely used in the literature. The results can be extended to obtain non-asymptotic error bounds for MCMC estimators. We demonstrate how to apply our convergence and approximation results to the analysis of specific sampling algorithms, including Random walk Metropolis, Metropolis adjusted Langevin algorithm with perturbed target densities, and parallel tempering Monte Carlo with perturbed densities. Finally, we present some simple numerical examples to verify our theoretical claims. 
    more » « less
  4. null (Ed.)
    Langevin dynamics (LD) has been proven to be a powerful technique for optimizing a non-convex objective as an efficient algorithm to find local minima while eventually visiting a global minimum on longer time-scales. LD is based on the first-order Langevin diffusion which is reversible in time. We study two variants that are based on non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and the Langevin dynamics with a non-symmetric drift (NLD). Adopting the techniques of Tzen et al. (2018) for LD to non-reversible diffusions, we show that for a given local minimum that is within an arbitrary distance from the initialization, with high probability, either the ULD trajectory ends up somewhere outside a small neighborhood of this local minimum within a recurrence time which depends on the smallest eigenvalue of the Hessian at the local minimum or they enter this neighborhood by the recurrence time and stay there for a potentially exponentially long escape time. The ULD algorithm improves upon the recurrence time obtained for LD in Tzen et al. (2018) with respect to the dependency on the smallest eigenvalue of the Hessian at the local minimum. Similar results and improvements are obtained for the NLD algorithm. We also show that non-reversible variants can exit the basin of attraction of a local minimum faster in discrete time when the objective has two local minima separated by a saddle point and quantify the amount of improvement. Our analysis suggests that non-reversible Langevin algorithms are more efficient to locate a local minimum as well as exploring the state space. 
    more » « less
  5. Belkin, M.; Kpotufe, S. (Ed.)
    Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of 𝑂(𝑇−1/4(𝑙𝑜𝑔𝑇)1/2) from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves 𝜖-suboptimal solutions, on average, provided that it is run for a time that is polynomial in 𝜖 and slightly super-exponential in the problem dimension. 
    more » « less