skip to main content


Title: Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of 𝑂(𝑇−1/4(𝑙𝑜𝑔𝑇)1/2) from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves 𝜖-suboptimal solutions, on average, provided that it is run for a time that is polynomial in 𝜖 and slightly super-exponential in the problem dimension.  more » « less
Award ID(s):
2122856
NSF-PAR ID:
10354811
Author(s) / Creator(s):
Editor(s):
Belkin, M.; Kpotufe, S.
Date Published:
Journal Name:
Proceedings of Thirty Fourth Conference on Learning Theory
Volume:
PMLR 134
Page Range / eLocation ID:
2891-2937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Berry, Jonathan ; Shmoys, David ; Cowen, Lenore ; Naumann, Uwe (Ed.)
    Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms. 
    more » « less
  2. We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve $\epsilon$ accuracy in 2-Wasserstein distance, our algorithm achieves $\tilde O\big(n+\kappa^{2}d^{1/2}/\epsilon+\kappa^{4/3}d^{1/3}n^{2/3}/\epsilon^{2/3}%\wedge\frac{\kappa^2L^{-2}d\sigma^2}{\epsilon^2} \big)$ gradient complexity (i.e., number of component gradient evaluations), which outperforms the state-of-the-art HMC and stochastic gradient HMC methods in a wide regime. We also extend our algorithm for sampling from smooth and general log-concave distributions, and prove the corresponding gradient complexity as well. Experiments on both synthetic and real data demonstrate the superior performance of our algorithm. 
    more » « less
  3. Dasgupta, Sanjoy ; Haghtalab, Nika (Ed.)
    Convex-concave min-max problems are ubiquitous in machine learning, and people usually utilize first-order methods (e.g., gradient descent ascent) to find the optimal solution. One feature which separates convex-concave min-max problems from convex minimization problems is that the best known convergence rates for min-max problems have an explicit dependence on the size of the domain, rather than on the distance between initial point and the optimal solution. This means that the convergence speed does not have any improvement even if the algorithm starts from the optimal solution, and hence, is oblivious to the initialization. Here, we show that strict-convexity-strict-concavity is sufficient to get the convergence rate to depend on the initialization. We also show how different algorithms can asymptotically achieve initialization-dependent convergence rates on this class of functions. Furthermore, we show that the so-called “parameter-free” algorithms allow to achieve improved initialization-dependent asymptotic rates without any learning rate to tune. In addition, we utilize this particular parameter-free algorithm as a subroutine to design a new algorithm, which achieves a novel non-asymptotic fast rate for strictly-convex-strictly-concave min-max problems with a growth condition and Hölder continuous solution mapping. Experiments are conducted to verify our theoretical findings and demonstrate the effectiveness of the proposed algorithms. 
    more » « less
  4. From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold. 
    more » « less
  5. In this paper, we propose a new algorithm for solving convex-concave saddle-point problems using regret minimization in the repeated game framework. To do so, we introduce the Conic Blackwell Algorithm + ([Formula: see text]), a new parameter- and scale-free regret minimizer for general convex compact sets. [Formula: see text] is based on Blackwell approachability and attains [Formula: see text] regret. We show how to efficiently instantiate [Formula: see text] for many decision sets of interest, including the simplex, [Formula: see text] norm balls, and ellipsoidal confidence regions in the simplex. Based on [Formula: see text], we introduce [Formula: see text], a new parameter-free algorithm for solving convex-concave saddle-point problems achieving a [Formula: see text] ergodic convergence rate. In our simulations, we demonstrate the wide applicability of [Formula: see text] on several standard saddle-point problems from the optimization and operations research literature, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, [Formula: see text] achieves state-of-the-art numerical performance and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters. Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by the National Science Foundation [Grant IIS-2147361]. 
    more » « less