- Award ID(s):
- 1352740
- NSF-PAR ID:
- 10344088
- Date Published:
- Journal Name:
- Disciplinary and Interdisciplinary Science Education Research
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2662-2300
- Page Range / eLocation ID:
- https://doi.org/10.1186/s43031-020-00020-9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The paper analyzes focus group data to explore student perceptions of an inquiry-based undergraduate biology course. Though the course was designed to mimic the scientific process by incorporating uncertainty, peer review, and self-reflection, students came to class focused on getting As and with a developed schema for didactic instruction and passive learning. They perceived the autonomy and self-directedness of the learning experience as a threat to their grades, and responded with strategies that protected their grades and ego, but were deleterious to learning. Students could identify merits of the inquiry-based approach; however, they made clear: they prioritized grades, and were unwilling to trust an unfamiliar pedagogy if they perceived it jeopardized their grades. In the framework of self-regulated learning, the discussion considers how to scaffold students to foreground learning over achievement.more » « less
-
This work in progress reports an intervention to develop leadership skills in engineering undergraduate students. A methodology based on a cognitive apprentice framework was implemented, where coaching, Peer-Led Team Learning (PLTL), cooperative learning, reflection, and self-assessment are combined to train peer leaders from different engineering programs. Students in the PLTL Peer Leaders initiative are low-income academically talented students (LIATS) from a Hispanic Serving Institution (HSI). Early results analyzing post workshop reflections and self-assessment of peer leaders were used to identify changes in leadership skills of peer leaders. This paper reports on the methodology employed and early results from students’ reflection and self-assessment.more » « less
-
Abstract Background Continuous calls for reform in science education emphasize the need to provide science experiences in lower-division courses to improve the retention of STEM majors and to develop science literacy and STEM skills for all students. Open or authentic inquiry and undergraduate research are effective science experiences leading to multiple gains in student learning and development. Most inquiry-based learning activities, however, are implemented in laboratory classes and the majority of them are guided inquiries. Although course-based undergraduate research experiences have significantly expanded the reach of the traditional apprentice approach, it is still challenging to provide research experiences to nonmajors and in large introductory courses. We examined student learning through a web-based authentic inquiry project implemented in a high-enrollment introductory ecology course for over a decade.
Results Results from 10 years of student self-assessment of learning showed that the authentic inquiry experiences were consistently associated with significant gains in self-perception of interest and understanding and skills of the scientific process for all students—both majors and nonmajors, both lower- and upper-division students, both women and men, and both URM and non-URM students. Student performance in evaluating the quality of an inquiry report, before and after the inquiry project, also showed significant learning gains for all students. The authentic inquiry experiences proved highly effective for lower-division students, nonmajors, and women and URM students, whose learning gains were similar to or greater than those of their counterparts. The authentic inquiry experiences were particularly helpful to students who were less prepared with regard to the ability to evaluate a scientific report and narrowed the performance gap.
Conclusions These findings suggest that authentic inquiry experiences can serve as an effective approach for engaging students in high-enrollment, introductory science courses. They can facilitate development of science literacy and STEM skills of all students, skills that are critical to students’ personal and professional success and to informed engagement in civic life.
-
Abstract Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.
-
This paper explores the effect of a paired lab course on students’ course outcomes in nonmajors introductory biology at the University of Alaska Anchorage. We compare course completion and final grades for 10,793 students (3736 who simultaneously enrolled in the lab and 7057 who did not). Unconditionally, students who self-select into the lab are more likely to complete the course and to earn a higher grade than students who do not. However, when we condition on observable course, academic, and demographic characteristics, we find much of this difference in student performance outcomes is attributable to selection bias, rather than an effect of the lab itself. The data and discussion challenge the misconception that labs serve as recitations for lecture content, noting that the learning objectives of science labs should be more clearly articulated and assessed independent of lecture course outcomes.more » « less