skip to main content


Title: Strategy Uptake in Writing Pal: Adaptive Feedback and Instruction
The present study examined the extent to which adaptive feedback and just-in-time writing strategy instruction improved the quality of high school students’ persuasive essays in the context of the Writing Pal (W-Pal). W-Pal is a technology-based writing tool that integrates automated writing evaluation into an intelligent tutoring system. Students wrote a pretest essay, engaged with W-Pal’s adaptive instruction over the course of four training sessions, and then completed a posttest essay. For each training session, W-Pal differentiated strategy instruction for each student based on specific weaknesses in the initial training essays prior to providing the opportunity to revise. The results indicated that essay quality improved overall from pretest to posttest with respect to holistic quality, as well as several specific dimensions of essay quality, particularly for students with lower literacy skills. Moreover, students’ scores on some of the training essays improved from the initial to revised version on the dimensions of essay quality that were targeted by instruction, whereas scores did not improve on the dimensions that were not targeted by instruction. Overall, the results suggest that W-Pal’s adaptive strategy instruction can improve the quality of students’ essays overall, as well as more specific dimensions of essay quality.  more » « less
Award ID(s):
1828010
NSF-PAR ID:
10344106
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Educational Computing Research
Volume:
60
Issue:
3
ISSN:
0735-6331
Page Range / eLocation ID:
696 to 721
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial reasoning skills have been linked to success in STEM and are considered an important part of geoscience problem solving. Most agree that these are a group of skills rather than a single ability, though there is no agreement on the full list of constituent skills. Few studies have attempted to isolate specific spatial skills for deliberate training. We conducted an experiment to isolate and train the skill of recognizing horizontal (a crucial component in measuring the orientation of planes) using a dedicated Virtual Reality (VR) module. We recruited 21 undergraduate students from natural science and social science majors for the study, which consisted of a pretest, 15-minute training, and posttest. The pre- and posttests consisted of a short multiple choice vocabulary quiz, 5 hand-drawn and 5 multiple choice Water Level Task (WLT) questions, and the Vandenberg and Kuse Mental Rotation Task (MRT). Participants were sorted based on pre-test Water Level Task scores, only those with scores <80% were placed in an intervention group and randomly assigned to training, either in VR (experimental) or on paper (standard), of about 15 minutes. The high-scoring participants received no training (comparison). All three groups of participants completed a posttest after the training (if any). After removing three participants who did not return for the posttest session, we had 18 participants in total: 6 in VR, 7 in the comparison group, and 5 in the standard group. Repeated measures ANOVA of the pre to post hand-drawn WLT scores shows at least one group is different (p=.002) and Tukey’s Post-Hoc analysis indicates that the VR group improved significantly more that the high-scoring comparison group (Mean Difference = -1.857, p = .001) and the standard group (Mean Difference = -1.200, p = .049). While any significant result is encouraging, a major limitation of this study is the small sample size and unequal variances on both the pretest (Levene’s HOV test, F = 7.50, p = .006) and posttest (F = 13.53, p < .001), despite random assignment. More trials are needed to demonstrate reproducibility. While more tests are needed, this preliminary study shows the potential benefit of VR in training spatial reasoning skills. 
    more » « less
  2. This paper analyzes students’ design solutions for an NGSS aligned earth sciences curriculum, the Playground Design Challenge (PDC), for upper-elementary school (grade 5 and 6) students.We present the underlying computational model and the user interface for generating design solutions for a school playground that has to meet cost, water runoff, and accessibility constraints. We use data from the pretest and posttest assessments and activity logs collected from a pilot study run in an elementary school to evaluate the effectiveness of the curriculum and investigate the relations between students’ behaviors and their learning performances. The results show that (1) the students’ scores significantly increased from pretest to posttest on engineering design assessments, and (2) students’ solution-generation and testing behaviors were indicative of the quality of their design solutions as well as their pre-post learning gains. In the future, tracking such behaviors online will allow us to provide adaptive scaffolds that help students improve on their engineering design solutions. 
    more » « less
  3. A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence. 
    more » « less
  4. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  5. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less