skip to main content


Title: Statistical Analysis of Bifurcating Region 2 Field-Aligned Currents Using AMPERE
We present a statistical analysis of the occurrence of bifurcations of the Region 2 (R2) Field-Aligned Current (FAC) region, observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Previously, these have been shown to occur as the polar cap contracts after substorm onset, the beginning of the growth phase. During this phase both the Region 1 (R1) and R2 currents move equatorwards as the polar cap expands. Following onset, the R1 FAC region contracts polewards but the R2 FAC continues to expand equatorwards before eventually fading. At the same time, a new R2 FAC develops equatorwards of the R1 FAC. We have proposed that the bifurcated FACs formed during substorms are associated with plasma injections from the magnetotail into the inner magnetosphere, and that they might be the FAC signature associated with Sub-Auroral Polarization Streams (SAPS). We investigate the seasonal dependence of the occurrence of bifurcations from 2010 to 2016, determining whether they occur predominantly at dawn or dusk. Region 2 Bifurcations (R2Bs) are observed most frequently in the summer hemisphere and at dusk, and we discuss the possible influence of ionospheric conductance. We also discuss a newly discovered UT dependence of the R2B occurrences between 2011 and 2014. This dependence is characterized by broad peaks in occurrence near 09 and 21 UT in both hemispheres. Reasons for such a preference in occurrence are explored.  more » « less
Award ID(s):
2002574
NSF-PAR ID:
10344183
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present examples of high‐latitude field‐aligned current (FAC) and toroidal magnetic potential patterns in both hemispheres reconstructed at a 2‐min cadence using an updated optimal interpolation (OI) method that ingests magnetic perturbation data provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. A solstice and an equinoctial event are studied to demonstrate the reconstructed patterns and to provide scientific insights into FAC response to different solar wind drivers. For the 14 June 2011 high‐speed stream event with mostly northwardBzdriving, we found persistently stronger FACs in the Northern Hemisphere. Extreme interhemispheric asymmetry is associated with the interplanetary magnetic field (IMF) direction and large dipole tilt, consistent with earlier studies. FAC asymmetries seen during an isolated substorm can be attributed to dipole tilt. During relatively low geomagnetic activity, the FAC response to IMFBxchanges is identified. For the 17–18 March 2013 period, we provide global snapshots of rapid FAC changes related to an interplanetary shock passage. We further present comparisons between instantaneous and mean behaviors of FAC for the solar wind sheath passage and interplanetary coronal mass ejection southwardBzinterval and northwardBzintervals. We show that (1) sheath passage results in strong FAC and high variation in the dayside polar cap region and pre‐midnight region, different from the typical R1/R2 currents during prolonged southwardBz; (2) four‐cell reverse patterns appear during northwardBzbut are not stable; and (3) persistent dawn‐dusk asymmetry is seen throughout the storm, especially during an extreme substorm, likely associated with a dawnside current wedge.

     
    more » « less
  2. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  3. Abstract

    We propose a mechanism for the formation of the horse‐collar auroral configuration during periods of strongly northward interplanetary magnetic field (IMF), invoking the action of dual‐lobe reconnection (DLR). Auroral observations are provided by the Imager for Magnetopause‐to‐Aurora Global Exploration (IMAGE) satellite and spacecraft of the Defense Meteorological Satellite Program (DMSP). We also use ionospheric flow measurements from DMSP and polar maps of field‐aligned currents (FACs) derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Sunward convection is observed within the dark polar cap, with antisunward flows within the horse‐collar auroral region, together with the NBZ FAC distribution expected to be associated with DLR. We suggest that newly closed flux is transported antisunward and to dawn and dusk within the reverse lobe cell convection pattern associated with DLR, causing the polar cap to acquire a teardrop shape and weak auroras to form at high latitudes. Horse‐collar auroras are a common feature of the quiet magnetosphere, and this model provides a first understanding of their formation, resolving several outstanding questions regarding the nature of DLR and the magnetospheric structure and dynamics during northward IMF. The model can also provide insights into the trapping of solar wind plasma by the magnetosphere and the formation of a low‐latitude boundary layer and cold, dense plasma sheet. We speculate that prolonged DLR could lead to a fully closed magnetosphere, with the formation of horse‐collar auroras being an intermediate step.

     
    more » « less
  4. Abstract

    The formation of polar cap density enhancements, such as tongues‐of‐ionization (TOIs), are often attributed to enhanced dayside reconnection and convection due to solar wind changes. However, ionospheric poleward moving density enhancements can also form in the absence of changes in the solar wind. This study examines how TOI and patch events that are not triggered by solar wind changes relate to magnetospheric processes, specifically substorms. Based on total electron content and Super Dual Auroral Radar Network (SuperDARN) observations, we find substorms that occur at the same time as TOIs are associated with sudden enhancements in dayside poleward flows during the substorm expansion phase. Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations also show enhanced field‐aligned currents (FACs) that extend into the dayside ionosphere during this period. We suggest that the global enhancement of FACs and convection during these substorms are the drivers of these TOIs by enhancing dayside convection and transporting high‐density lower‐latitude plasma into the polar cap. However, we also find that not all substorms are coincident with polar cap density enhancements. A superposed epoch study showed that the AL index for TOIs during substorms is not particularly stronger than substorms without TOIs, but epoch studies of AMPERE observations do show events with TOIs to have a higher total FAC on both the dayside and nightside. Our results show the importance of TOI formation during substorms when solar wind drivers are absent, and the importance of considering substorms in the global current system. This work also shows the need to incorporate substorms into models of high‐latitude global convection and currents.

     
    more » « less
  5. Abstract

    Subauroral Polarization Streams (SAPS) are associated with closure of region 2 field‐aligned current (R2 FAC) through the low conductivity region. Although SAPS have often been studied from a magnetosphere‐ionosphere coupling perspective, recent observations suggest strong interaction also exists between SAPS and the thermosphere. Our study focuses on thermospheric wind driving and its impact on SAPS and R2 FAC during the 17 March 2013 geomagnetic storm using both observations and the physics‐based Rice Convection Model‐Coupled Thermosphere, Ionosphere, Plasmasphere, electrodynamics (RCM‐CTIPe) model that self‐consistently couples the magnetosphere‐ionosphere‐thermosphere system. Defense Meteorological Satellite Program (DMSP)‐18 and Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) satellite observations show that, as the storm progresses, sunward ion flows intensify and expand equatorward and are accompanied by strengthening of subauroral neutral winds with some delay. Our model successfully reproduces time evolution and overall structure of the sunward ion drift and neutral wind. A force term analysis is performed to investigate the momentum transfer to the neutrals from the ions. Contrary to previous studies showing that Coriolis force is the main driver of neutrals during storm time, we find that the ion drag is the largest force driving westward neutral wind in the SAPS region where the ion density is low in the trough region. Furthermore, simulations with and without the neutral wind dynamo effect are compared to quantify the effect of the neutral to plasma flow. The comparison shows that the self‐consistent active ionosphere thermosphere coupling increases the R2 FAC and the westward ion drift equatorward of the SAPS region by 20% and 40% by the flywheel effect, respectively.

     
    more » « less