skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistical Analysis of Bifurcating Region 2 Field-Aligned Currents Using AMPERE
We present a statistical analysis of the occurrence of bifurcations of the Region 2 (R2) Field-Aligned Current (FAC) region, observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Previously, these have been shown to occur as the polar cap contracts after substorm onset, the beginning of the growth phase. During this phase both the Region 1 (R1) and R2 currents move equatorwards as the polar cap expands. Following onset, the R1 FAC region contracts polewards but the R2 FAC continues to expand equatorwards before eventually fading. At the same time, a new R2 FAC develops equatorwards of the R1 FAC. We have proposed that the bifurcated FACs formed during substorms are associated with plasma injections from the magnetotail into the inner magnetosphere, and that they might be the FAC signature associated with Sub-Auroral Polarization Streams (SAPS). We investigate the seasonal dependence of the occurrence of bifurcations from 2010 to 2016, determining whether they occur predominantly at dawn or dusk. Region 2 Bifurcations (R2Bs) are observed most frequently in the summer hemisphere and at dusk, and we discuss the possible influence of ionospheric conductance. We also discuss a newly discovered UT dependence of the R2B occurrences between 2011 and 2014. This dependence is characterized by broad peaks in occurrence near 09 and 21 UT in both hemispheres. Reasons for such a preference in occurrence are explored.  more » « less
Award ID(s):
2002574
PAR ID:
10344183
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  2. Abstract We present examples of high‐latitude field‐aligned current (FAC) and toroidal magnetic potential patterns in both hemispheres reconstructed at a 2‐min cadence using an updated optimal interpolation (OI) method that ingests magnetic perturbation data provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. A solstice and an equinoctial event are studied to demonstrate the reconstructed patterns and to provide scientific insights into FAC response to different solar wind drivers. For the 14 June 2011 high‐speed stream event with mostly northwardBzdriving, we found persistently stronger FACs in the Northern Hemisphere. Extreme interhemispheric asymmetry is associated with the interplanetary magnetic field (IMF) direction and large dipole tilt, consistent with earlier studies. FAC asymmetries seen during an isolated substorm can be attributed to dipole tilt. During relatively low geomagnetic activity, the FAC response to IMFBxchanges is identified. For the 17–18 March 2013 period, we provide global snapshots of rapid FAC changes related to an interplanetary shock passage. We further present comparisons between instantaneous and mean behaviors of FAC for the solar wind sheath passage and interplanetary coronal mass ejection southwardBzinterval and northwardBzintervals. We show that (1) sheath passage results in strong FAC and high variation in the dayside polar cap region and pre‐midnight region, different from the typical R1/R2 currents during prolonged southwardBz; (2) four‐cell reverse patterns appear during northwardBzbut are not stable; and (3) persistent dawn‐dusk asymmetry is seen throughout the storm, especially during an extreme substorm, likely associated with a dawnside current wedge. 
    more » « less
  3. Abstract Two interacting high‐speed solar wind streams (HSSs) and associated stream interaction regions (SIR) caused a moderate geomagnetic storm during 14–20 March 2016. The spatio‐temporal evolution of the total electron content (TEC) during the storm is studied by using Global Navigation Satellite System (GNSS) data. The moderate storm caused significant and long‐lasting changes on TEC within the polar cap (70–90 MLAT), at auroral and sub‐auroral latitudes (60–70 MLAT), and at mid‐latitudes (40–60 MLAT). A 25%–50% depletion in TEC was observed for six days in the day, dusk and dawn sectors in the polar cap region and in the day and dusk sectors at the auroral and sub‐auroral latitudes. Sub‐auroral polarization streams observed by the Defense Meteorological Satellite Program satellite contributed to the sub‐auroral dusk TEC decreases. At mid‐latitudes, TEC depletion was observed in all local time sectors 21 hr after the storm onset. It is suggested that ion‐neutral frictional heating causes the TEC depletions, which is further supported by the observed spatial correlation between TEC depletions and O/N2decreases at mid‐latitudes observed by TIMED/GUVI. The storm induced a prolonged positive phase at mid‐latitudes lasting 9 hr. In the polar cap, enhancements of TEC up to 200% were caused by polar cap patches. TEC increases were the dominant feature in the night and morning sectors within the auroral oval because of particle precipitation and resulted up to regionally averaged 6 TECU (200%) increases. 
    more » « less
  4. Abstract The effect of storms driven by solar wind high‐speed streams (HSSs) on the high‐latitude ionosphere is inadequately understood. We study the ionosphericF‐region during a moderate magnetic storm on 14 March 2016 using the EISCAT Tromsø and Svalbard radar latitude scans. AMPERE field‐aligned current (FAC) measurements are also utilized. Long‐duration 5‐day electron density depletions (20%–80%) are the dominant feature outside of precipitation‐dominated midnight and morning sectors. Depletions are found in two major regions. In the afternoon to evening sector (12–21 magnetic local time, MLT) the depleted region is 10–18 magnetic latitude (MLAT) in width, with the largest latitudinal extent 62–80 MLAT in the afternoon. The second region is in the morning to pre‐noon sector (04–10 MLT), where the depletion region occurs at 72–80 MLAT within the auroral oval and extends to the polar cap. Using EISCAT ion temperature and ion velocity data, we show that local ion‐frictional heating is observed roughly in 50% of the depleted regions with ion temperature increase by 200 K or more. For the rest of the depletions, we suggest that the mechanism is composition changes due to ion‐neutral frictional heating transported by neutral winds. Even though depletedF‐regions may occur within any of the large‐scale FAC regions or outside of them, the downward FAC regions (R2 in the afternoon and evening, R0 in the afternoon, and R1 in the morning) are favored, suggesting that downward currents carried by upward moving ionospheric electrons may provide a small additional effect for depletion. 
    more » « less
  5. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. At the height of the ionosphere, it has a strong circular horizontal plasma flow with a nearly zero-flow center and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. By analyzing the long-term optical observation onboard the Defense Meteorological Satellite Program (DMSP) F16 satellite from 2005 to 2016, we found that space hurricanes in the Northern Hemisphere occur in summer and have a maximum occurrence rate in the afternoon sector around solar maximum. In particular, space hurricanes are more likely to occur in the dayside polar cap at magnetic latitudes greater than 80°, and their MLT (magnetic local time) dependence shows a positive relationship with the IMF (interplanetary magnetic field) clock angle. We also found that space hurricanes occur mainly under dominant positive IMF By and Bz and negative Bx conditions. It is suggested that the stable high-latitude lobe reconnection, which occurs under the conditions of a large Earth’s dipole tilt angle and high ionosphere conductivity in summer, should be the formation mechanism of space hurricanes. The result will give a better understanding of the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. 
    more » « less