skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Streaming Variational Monte Carlo
Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning scenarios and suitable for real-time applications.  more » « less
Award ID(s):
1734910
PAR ID:
10344229
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an online variational inference framework for joint parameter-state estimation in nonlinear systems. This approach provides a probabilistic estimate of both parameters and states, and does so without relying on a mean-field assumption of independence of the two. The proposed method leverages a factorized form of the target posterior distribution to enable an effective pairing of variational inference for the marginal posterior of parameters with conditional Gaussian filtering for the conditional posterior of the states. This factorization is retrained at every time-step via formulation that combines variational inference and regression. The effectiveness of the framework is demonstrated through applications to two example systems, where it outperforms both the joint Unscented Kalman Filter and Bootstrap Particle Filter parameter-state augmentation in numerical experiments. 
    more » « less
  2. SUMMARY Geological Carbon Storage (GCS) is one of the most viable climate-change mitigating net-negative CO2-emission technologies for large-scale CO2 sequestration. However, subsurface complexities and reservoir heterogeneity demand a systematic approach to uncertainty quantification to ensure both containment and conformance, as well as to optimize operations. As a step toward a digital twin for monitoring and control of underground storage, we introduce a new machine-learning-based data-assimilation framework validated on realistic numerical simulations. The proposed digital shadow combines simulation-based inference (SBI) with a novel neural adaptation of a recently developed nonlinear ensemble filtering technique. To characterize the posterior distribution of CO2 plume states (saturation and pressure) conditioned on multimodal time-lapse data, consisting of imaged surface seismic and well-log data, a generic recursive scheme is employed, where neural networks are trained on simulated ensembles for the time-advanced state and observations. Once trained, the digital shadow infers the state as time-lapse field data become available. Unlike ensemble Kalman filtering, corrections to predicted states are computed via a learned nonlinear prior-to-posterior mapping that supports non-Gaussian statistics and nonlinear models for the dynamics and observations. Training and inference are facilitated by the combined use of conditional invertible neural networks and bespoke physics-based summary statistics. Starting with a probabilistic permeability model derived from a baseline seismic survey, the digital shadow is validated against unseen simulated ground-truth time-lapse data. Results show that injection-site-specific uncertainty in permeability can be incorporated into state uncertainty, and the highest reconstruction quality is achieved when conditioning on both seismic and wellbore data. Despite incomplete permeability knowledge, the digital shadow accurately tracks the subsurface state throughout a realistic CO2 injection project. This work establishes the first proof-of-concept for an uncertainty-aware, scalable digital shadow, laying the foundation for a digital twin to optimize underground storage operations. 
    more » « less
  3. Abstract We consider Bayesian inference for large-scale inverse problems, where computational challenges arise from the need for repeated evaluations of an expensive forward model. This renders most Markov chain Monte Carlo approaches infeasible, since they typically require O ( 1 0 4 ) model runs, or more. Moreover, the forward model is often given as a black box or is impractical to differentiate. Therefore derivative-free algorithms are highly desirable. We propose a framework, which is built on Kalman methodology, to efficiently perform Bayesian inference in such inverse problems. The basic method is based on an approximation of the filtering distribution of a novel mean-field dynamical system, into which the inverse problem is embedded as an observation operator. Theoretical properties are established for linear inverse problems, demonstrating that the desired Bayesian posterior is given by the steady state of the law of the filtering distribution of the mean-field dynamical system, and proving exponential convergence to it. This suggests that, for nonlinear problems which are close to Gaussian, sequentially computing this law provides the basis for efficient iterative methods to approximate the Bayesian posterior. Ensemble methods are applied to obtain interacting particle system approximations of the filtering distribution of the mean-field model; and practical strategies to further reduce the computational and memory cost of the methodology are presented, including low-rank approximation and a bi-fidelity approach. The effectiveness of the framework is demonstrated in several numerical experiments, including proof-of-concept linear/nonlinear examples and two large-scale applications: learning of permeability parameters in subsurface flow; and learning subgrid-scale parameters in a global climate model. Moreover, the stochastic ensemble Kalman filter and various ensemble square-root Kalman filters are all employed and are compared numerically. The results demonstrate that the proposed method, based on exponential convergence to the filtering distribution of a mean-field dynamical system, is competitive with pre-existing Kalman-based methods for inverse problems. 
    more » « less
  4. Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Matérn kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Matérn GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning. 
    more » « less
  5. Despite many successful examples in which probabilistic inference can account for perception, we have little understanding of how the brain represents and uses structured priors that capture the complexity of natural input statistics. Here we construct a recurrent circuit model that can implicitly represent priors over latent variables, and combine them with sensory and contextual sources of information to encode task-specific posteriors. Inspired by the recent success of diffusion models as means of learning and using priors over images, our model uses dendritic nonlinearities optimized for denoising, and stochastic somatic integration with the degree of noise modulated by an oscillating global signal. Combining these elements into a recurrent network yields a stochastic dynamical system that samples from the prior at a rate prescribed by the period of the global oscillator. Additional inputs reflecting sensory or top-down contextual information alter these dynamics to generate samples from the corresponding posterior, with different input gating patterns selecting different inference tasks. We demonstrate that this architecture can sample from low dimensional nonlinear manifolds and multimodal posteriors. Overall, the model provides a new framework for circuit-level representation of probabilistic information, in a format that facilitates flexible inference. 
    more » « less