skip to main content


Title: Quantifying Hydrated Electron Transformation Kinetics in UV-Advanced Reduction Processes Using the R e–,UV Method
Award ID(s):
2050934
NSF-PAR ID:
10344246
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
56
Issue:
14
ISSN:
0013-936X
Page Range / eLocation ID:
10329 to 10338
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Planar MO 3 (M = B, C, N) units have frequently been considered important structural components of novel birefringent crystal materials. An efficient approach for constructing new functional crystals is to simultaneously assemble multiple structural motifs together. Two compounds, Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O (X = Br and Cl), were synthesized by the integration of three kinds of anionic groups. More interestingly, the [CO 3 ] 2− and [NO 3 ] − groups in Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O are all coplanar with the aid of [NaO 7 ] 13− polyhedra, which can enhance the anisotropic polarizability. Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O have a large theoretical birefringence of ∼0.165 at 1064 nm and possess a short UV cut-off edge of ∼230 nm. Additionally, the two compounds exhibit good crystal growth habits. These properties illustrate that Na 3 Rb 6 (CO 3 ) 3 (NO 3 ) 2 X·6H 2 O are promising UV birefringent crystals. 
    more » « less
  2. Abstract

    We have measured the 30 and 100 eV far ultraviolet (FUV) emission cross sections of the optically allowed Fourth Positive Group (4PG) band system (A1Π → X1Σ+) of CO and the optically forbidden O (5So → 3P) 135.6 nm atomic transition by electron‐impact‐induced‐fluorescence of CO and CO2. We present a model excitation cross section from threshold to high energy for theA1Π state, including cascade by electron impact on CO. TheA1Π state is perturbed by triplet states leading to an extended FUV glow from electron excitation of CO. We derive a model FUV spectrum of the 4PG band system from dissociative excitation of CO2, an important process observed on Mars and Venus. Our unique experimental setup consists of a large vacuum chamber housing an electron gun system and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging Ultraviolet Spectrograph optical engineering unit, operating in the FUV (110–170 nm). The determination of the total Oi(5So) at 135.6 nm emission cross section is accomplished by measuring the cylindrical glow pattern of the metastable emission from electron impact by imaging the glow intensity about the electron beam from nominally zero to ~400 mm distance from the electron beam. The study of the glow pattern of Oi(135.6 nm) from dissociative excitation of CO and CO2indicates that the Oi(5So) state has a kinetic energy of ~1 eV by modeling the radial glow pattern with the published lifetime of 180 μs for the Oi(5So) state.

     
    more » « less
  3. null (Ed.)
    To better understand the elimination of transforming activity of antibiotic resistance genes (ARGs), this study investigated the deactivation of transforming activity of an ARG (in Escherichia coli as a host) and ARG degradation (according to quantitative PCR [qPCR] with different amplicon sizes) during UV (254 nm) and UV/H 2 O 2 treatments of plasmid pUC19 containing an ampicillin resistance gene ( amp R ). The required UV fluence for each log 10 reduction of the transforming activity during UV treatment was ∼37 mJ cm −2 for both extra- and intra-cellular pUC19 (the latter within E. coli ). The resulting fluence-based rate constant ( k ) of ∼6.2 × 10 −2 cm 2 mJ −1 was comparable to the k determined previously for transforming activity loss of plasmids using host cells capable of DNA repair, but much lower (∼10-fold) than that for DNA repair-deficient cells. The k value for pUC19 transforming activity loss was similarly much lower than the k calculated for cyclobutane-pyrimidine dimer (CPD) formation in the entire plasmid. These results indicate the significant role of CPD repair in the host cells. The degradation rate constants ( k ) of amp R measured by qPCR increased with increasing target amplicon size (192–851 bp) and were close to the k calculated for the CPD formation in the given amplicons. Further analysis of the degradation kinetics of plasmid-encoded genes from this study and from the literature revealed that qPCR detected most UV-induced DNA damage. In the extracellular plasmid, DNA damage mechanisms other than CPD formation ( e.g. , base oxidation) were detectable by qPCR and gel electrophoresis, especially during UV/H 2 O 2 treatment. Nevertheless, the enhanced DNA damage for the extracellular plasmids did not result in faster elimination of the transforming activity. Our results indicate that calculated CPD formation rates and qPCR analyses are useful for predicting and/or measuring the rate of DNA damage and predicting the efficiency of transforming activity elimination for plasmid-encoded ARGs during UV-based water disinfection and oxidation processes. 
    more » « less
  4. Abstract

    We perform a super-resolution analysis of the Subaru Hyper Suprime-Cam (HSC) images to estimate the major merger fractions of z ∼ 4–7 dropout galaxies at the bright end of galaxy UV luminosity functions (LFs). Our super-resolution technique improves the spatial resolution of the ground-based HSC images, from ∼1″ to $\lesssim \!\!{0{^{\prime \prime }_{.}}1}$, which is comparable to that of the Hubble Space Telescope, allowing us to identify z ∼ 4–7 bright major mergers at a high completeness value of $\gtrsim \!\!90\%$. We apply the super-resolution technique to 6412, 16, 94, and 13 very bright dropout galaxies at z ∼ 4, 5, 6, and 7, respectively, in a UV luminosity range of LUV ∼ 3–$15\, L_{\rm UV}^*$ corresponding to −24 ≲ MUV ≲ −22. The major merger fractions are estimated to be $f_{\rm merger}\sim 10\%$–$20\%$ at z ∼ 4 and $\sim 50\%$–$70\%$ at z ∼ 5–7, which shows no fmerger difference compared to those of a control faint galaxy sample. Based on the fmerger estimates, we verify contributions of source blending effects and major mergers to the bright-end of double power-law (DPL) shape of z ∼ 4–7 galaxy UV LFs. While these two effects partly explain the DPL shape at LUV ∼ 3–$10\, L_{\rm UV}^*$, the DPL shape cannot be explained at the very bright end of $L_{\rm UV}\gtrsim 10\, L_{\rm UV}^*$, even after the AGN contribution is subtracted. The results support scenarios in which other additional mechanisms such as insignificant mass quenching and low dust obscuration contribute to the DPL shape of galaxy UV LFs.

     
    more » « less