skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gardner formula for Ising perceptron models at small densities
We consider the Ising perceptron model with N spins and M = N*alpha patterns, with a general activation function U that is bounded above. For U bounded away from zero, or U a one-sided threshold function, it was shown by Talagrand (2000, 2011) that for small densities alpha, the free energy of the model converges in the large-N limit to the replica symmetric formula conjectured in the physics literature (Krauth–Mezard 1989, see also Gardner–Derrida 1988). We give a new proof of this result, which covers the more general class of all functions U that are bounded above and satisfy a certain variance bound. The proof uses the (first and second) moment method conditional on the approximate message passing iterates of the model. In order to deduce our main theorem, we also prove a new concentration result for the perceptron model in the case where U is not bounded away from zero.  more » « less
Award ID(s):
2031883
PAR ID:
10344272
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Learning Theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent study in K-stability suggests that Kawamata log terminal (klt) singularities whose local volumes are bounded away from zero should be bounded up to special degeneration. We show that this is true in dimension three, or when the minimal log discrepancies of Kollár components are bounded from above. We conjecture that the minimal log discrepancies of Kollár components are always bounded from above, and verify it in dimension three when the local volumes are bounded away from zero. We also answer a question from Han, Liu, and Qi on the relation between log canonical thresholds and local volumes. 
    more » « less
  2. The third Painlevé equation in its generic form, often referred to as Painlevé-III($$D_6$$), is given by $$ \frac{{\rm d}^2u}{{\rm d}x^2} =\frac{1}{u}\left(\frac{{\rm d}u}{{\rm d}x} \right)^2-\frac{1}{x} \frac{{\rm d}u}{{\rm d}x} + \frac{\alpha u^2 + \beta}{x}+4u^3-\frac{4}{u}, \qquad \alpha,\beta \in \mathbb C. $$ Starting from a generic initial solution $$u_0(x)$$ corresponding to parameters $$\alpha$$, $$\beta$$, denoted as the triple $$(u_0(x),\alpha,\beta)$$, we apply an explicit Bäcklund transformation to generate a family of solutions $$(u_n(x),\alpha + 4n,\beta + 4n)$$ indexed by $$n \in \mathbb N$$. We study the large $$n$$ behavior of the solutions $$(u_n(x), \alpha + 4n, \beta + 4n)$$ under the scaling $x = z/n$ in two different ways: (a) analyzing the convergence properties of series solutions to the equation, and (b) using a Riemann-Hilbert representation of the solution $$u_n(z/n)$$. Our main result is a proof that the limit of solutions $$u_n(z/n)$$ exists and is given by a solution of the degenerate Painlevé-III equation, known as Painlevé-III($$D_8$$), $$ \frac{{\rm d}^2U}{{\rm d}z^2} =\frac{1}{U}\left(\frac{{\rm d}U}{{\rm d}z}\right)^2-\frac{1}{z} \frac{{\rm d}U}{{\rm d}z} + \frac{4U^2 + 4}{z}.$$ A notable application of our result is to rational solutions of Painlevé-III($$D_6$$), which are constructed using the seed solution $(1,4m,-4m)$ where $$m \in \mathbb C \setminus \big(\mathbb Z + \frac{1}{2}\big)$$ and can be written as a particular ratio of Umemura polynomials. We identify the limiting solution in terms of both its initial condition at $z = 0$ when it is well defined, and by its monodromy data in the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic behavior of generic solutions of Painlevé-III, both $$D_6$$ and $$D_8$$ at $z = 0$. We also deduce the large $$n$$ behavior of the Umemura polynomials in a neighborhood of $z = 0$. 
    more » « less
  3. Abstract Let Ω ⊂ ℝ n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n ≥ 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (also known as uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider two real-valued (non-necessarily symmetric) uniformly elliptic operators L 0 ⁢ u = - div ⁡ ( A 0 ⁢ ∇ ⁡ u )   and   L ⁢ u = - div ⁡ ( A ⁢ ∇ ⁡ u ) L_{0}u=-\operatorname{div}(A_{0}\nabla u)\quad\text{and}\quad Lu=-%\operatorname{div}(A\nabla u) in Ω, and write ω L 0 {\omega_{L_{0}}} and ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this article and its companion[M. Akman, S. Hofmann, J. M. Martell and T. Toro,Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition,preprint 2021, https://arxiv.org/abs/1901.08261v3 ]is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A ∞ {A_{\infty}} -condition or a RH q {\operatorname{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper, we are interested in obtaininga square function and non-tangential estimates for solutions of operators as before. We establish that bounded weak null-solutions satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also show that for every weak null-solution, the associated square function can be controlled by the non-tangential maximal function in any Lebesgue space with respect to the associated elliptic measure. These results extend previous work ofDahlberg, Jerison and Kenig and are fundamental for the proof of the perturbation results in the paper cited above. 
    more » « less
  4. null (Ed.)
    Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds. 
    more » « less
  5. We consider weak solutions of the inhomogeneous non-cutoff Boltzmann equa- tion in a bounded domain with any of the usual physical boundary conditions: in-flow, bounce-back, specular-reflection and diffuse-reflection. When the mass, energy and entropy densities are bounded above, and the mass density is bounded away from a vacuum, we obtain an estimate of the L∞ norm of the solution de- pending on the macroscopic bounds on these hydrodynamic quantities only. This is a regularization effect in the sense that the initial data is not required to be bounded. We present a proof based on variational ideas, which is fundamentally different to the proof that was previously known for the equation in periodic spatial domains 
    more » « less