skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions
The third Painlevé equation in its generic form, often referred to as Painlevé-III($$D_6$$), is given by $$ \frac{{\rm d}^2u}{{\rm d}x^2} =\frac{1}{u}\left(\frac{{\rm d}u}{{\rm d}x} \right)^2-\frac{1}{x} \frac{{\rm d}u}{{\rm d}x} + \frac{\alpha u^2 + \beta}{x}+4u^3-\frac{4}{u}, \qquad \alpha,\beta \in \mathbb C. $$ Starting from a generic initial solution $$u_0(x)$$ corresponding to parameters $$\alpha$$, $$\beta$$, denoted as the triple $$(u_0(x),\alpha,\beta)$$, we apply an explicit Bäcklund transformation to generate a family of solutions $$(u_n(x),\alpha + 4n,\beta + 4n)$$ indexed by $$n \in \mathbb N$$. We study the large $$n$$ behavior of the solutions $$(u_n(x), \alpha + 4n, \beta + 4n)$$ under the scaling $x = z/n$ in two different ways: (a) analyzing the convergence properties of series solutions to the equation, and (b) using a Riemann-Hilbert representation of the solution $$u_n(z/n)$$. Our main result is a proof that the limit of solutions $$u_n(z/n)$$ exists and is given by a solution of the degenerate Painlevé-III equation, known as Painlevé-III($$D_8$$), $$ \frac{{\rm d}^2U}{{\rm d}z^2} =\frac{1}{U}\left(\frac{{\rm d}U}{{\rm d}z}\right)^2-\frac{1}{z} \frac{{\rm d}U}{{\rm d}z} + \frac{4U^2 + 4}{z}.$$ A notable application of our result is to rational solutions of Painlevé-III($$D_6$$), which are constructed using the seed solution $(1,4m,-4m)$ where $$m \in \mathbb C \setminus \big(\mathbb Z + \frac{1}{2}\big)$$ and can be written as a particular ratio of Umemura polynomials. We identify the limiting solution in terms of both its initial condition at $z = 0$ when it is well defined, and by its monodromy data in the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic behavior of generic solutions of Painlevé-III, both $$D_6$$ and $$D_8$$ at $z = 0$. We also deduce the large $$n$$ behavior of the Umemura polynomials in a neighborhood of $z = 0$.  more » « less
Award ID(s):
2204896
PAR ID:
10509347
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
;
Publisher / Repository:
SIGMA
Date Published:
Journal Name:
Symmetry, Integrability and Geometry: Methods and Applications
ISSN:
1815-0659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds. 
    more » « less
  2. Abstract We study the following mean field equation on a flat torus $$T:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$$: $$\begin{equation*} \varDelta u + \rho \left(\frac{e^{u}}{\int_{T}e^u}-\frac{1}{|T|}\right)=0, \end{equation*}$$where $$ \tau \in \mathbb{C}, \mbox{Im}\ \tau>0$$, and $|T|$ denotes the total area of the torus. We first prove that the solutions are evenly symmetric about any critical point of $$u$$ provided that $$\rho \leq 8\pi $$. Based on this crucial symmetry result, we are able to establish further the uniqueness of the solution if $$\rho \leq \min{\{8\pi ,\lambda _1(T)|T|\}}$$. Furthermore, we also classify all one-dimensional solutions by showing that the level sets must be closed geodesics. 
    more » « less
  3. Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$ 
    more » « less
  4. Abstract Given $$n$$ general points $$p_1, p_2, \ldots , p_n \in{\mathbb{P}}^r$$ it is natural to ask whether there is a curve of given degree $$d$$ and genus $$g$$ passing through them; by counting dimensions a natural conjecture is that such a curve exists if and only if $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor.\end{equation*}$$The case of curves with nonspecial hyperplane section was recently studied in [2], where the above conjecture was shown to hold with exactly three exceptions. In this paper, we prove a “bounded-error analog” for special linear series on general curves; more precisely we show that existence of such a curve subject to the stronger inequality $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor - 3.\end{equation*}$$Note that the $-3$ cannot be replaced with $-2$ without introducing exceptions (as a canonical curve in $${\mathbb{P}}^3$$ can only pass through nine general points, while a naive dimension count predicts twelve). We also use the same technique to prove that the twist of the normal bundle $$N_C(-1)$$ satisfies interpolation for curves whose degree is sufficiently large relative to their genus, and deduce from this that the number of general points contained in the hyperplane section of a general curve is at least $$\begin{equation*}\min\left(d, \frac{(r - 1)^2 d - (r - 2)^2 g - (2r^2 - 5r + 12)}{(r - 2)^2}\right).\end{equation*}$$ As explained in [7], these results play a key role in the author’s proof of the maximal rank conjecture [9]. 
    more » « less
  5. Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($$\alpha ,\beta ,k_1,k_2$$) linear boundary feedback law at the right end. The $$2 \times 2$$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $$\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$$. The role of the control parameters is examined and the following results have been proven: (i) when $$\beta \neq 0$$, the set of vibrational modes is asymptotically close to the vertical line on the complex $$\nu$$-plane given by the equation $$\Re \nu = \alpha + (1-k_1k_2)/\beta$$; (ii) when $$\beta = 0$$ and the parameter $$K = (1-k_1 k_2)/(k_1+k_2)$$ is such that $$\left |K\right |\neq 1$$ then the following relations are valid: $$\Re (\nu _n/n) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iii) when $$\beta =0$$, $|K| = 1$, and $$\alpha = 0$$, then the following relations are valid: $$\Re (\nu _n/n^2) = O\left (1\right )$$ and $$\Im (\nu _n/n) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iv) when $$\beta =0$$, $|K| = 1$, and $$\alpha>0$$, then the following relations are valid: $$\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$. 
    more » « less