6:2 fluorotelomer sulfonic acid (6:2 FTSA) is one per- and poly-fluoroalkyl substances commonly detected in the environment. While biotransformation of 6:2 FTSA has been reported, factors affecting desulfonation and defluorination of 6:2 FTSA remain poorly understood. This study elucidated the effects of carbon and sulfur sources on the gene expression of Rhodococcus jostii RHA1 which is responsible for the 6:2 FTSA biotransformation. While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. The desulfonation and defluorination ability of these enzymes toward 6:2 FTSA were validated through heterologous gene expression and in vitro assays. Four degradation metabolites were confirmed and one was identified as a tentative metabolite. The results provide a new understanding of 6:2 FTSA biotransformation by RHA1. The genes encoding these desulfonating- and defluorinating-enzymes are potential markers to be used to assess 6:2 FTSA biotransformation in the environment.
more »
« less
Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions
6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is a dominant per- and poly-fluoroalkyl substance (PFAS) in aqueous film-forming foam (AFFF)-impacted soil. While its biotransformation mechanisms have been studied, the complex effects of plants, nutrients, and soil microbiome interactions on the fate and removal of 6:2 FTSA are poorly understood. This study systematically investigated the potential of phytoremediation for 6:2 FTSA by Arabidopsis thaliana coupled with bioaugmentation of Rhodococcus jostiiRHA1 (designated as RHA1 hereafter) under different nutrient and microbiome conditions. Hyperaccumulation of 6:2 FTSA, defined as tissue/soil concentration > 10 and high translocation factor > 3, was observed in plants. However, biotransformation of 6:2 FTSA only occurred under sulfur-limited conditions. Spiking RHA1 not only enhanced the biotransformation of 6:2 FTSA in soil but also promoted plant growth. Soil microbiome analysis uncovered Rhodococcus as one of the dominant species in all RHA1-spiked soil. Different nutrients such as sulfur and carbon, bioaugmentation, and amendment of 6:2 FTSA caused significant changes in - the microbial community structure. This study revealed the synergistic effects of phytoremediation and bioaugmentation on 6:2 FTSA removal. and highlighted that the fate of 6:2 FTSA was highly influenced by the complex interactions of plants, nutrients, and soil microbiome.
more »
« less
- Award ID(s):
- 1914707
- PAR ID:
- 10344299
- Date Published:
- Journal Name:
- Environmental Science & Technology
- ISSN:
- 0013-936X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microorganisms associated with plants can affect nutrient and water acquisition, plant defenses, and ecological interactions, with effects on plant growth that range from beneficial to antagonistic. In Glycine max (soybean), many studies have examined the soil microbiome and the legume–rhizobium relationship, but little is known about foliar endophytes, their effects on plant biomass and fitness, and how plants respond to their presence. To address these questions, we inoculated Glycine max with field-collected isolates of previously isolated, dominant strains of Methylobacterium and Colletotrichum in either sterile or non-sterile soil. We then used RNAseq to compare the transcriptomic responses of plants to single- and co-inoculation of endophytes. We found that all endophyte treatments increased soybean growth compared to control, but only in sterile soil. These results suggest context-dependency, with endophytes serving as facultative mutualists under stress or nutrient deprivation. Similarly, transcriptomic analyses revealed that soybean defense and stress responses depended on the interaction of endophytes; Methylobacterium elicited the strongest response but was modulated by the presence of Colletotrichum. Our findings highlight the environmentally dependent effects of co-existing endophytes within soybean leaves.more » « less
-
Abstract. Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was initiated near Fairbanks, Alaska, to determine how the introduction of annual grasses and/or fertilizer would influence degradation of petroleum hydrocarbons (PHCs). After 1 year, grass and/or fertilizer-treated soils showed greater decreases in PHC concentrations compared to untreated plots. The site was then left for 15 years with no active site management. In 2011, we re-examined the site to explore the legacy of phytoremediation on contaminant disappearance, as well as on plant and soil microbial ecology. We found that the recruited vegetation and the current bulk soil microbial community structure and functioning were all heavily influenced by initial phytoremediation treatment. The number of diesel-degrading microorganisms (DDMs) was positively correlated with the percentage cover of vegetation at the site, which was influenced by initial treatment. Even 15 years later, the initial use of fertilizer had significant effects on microbial biomass, community structure, and activity. We conclude that phytoremediation treatment has long-term, legacy effects on the plant community, which, in turn, impact microbial community structure and functioning. It is therefore important to consider phytoremediation strategies that not only influence site remediation rates in the short-term but also prime the site for the restoration of vegetation over the long-term.more » « less
-
ABSTRACT The importance of biota to soil formation and landscape development is widely recognized. As biotic complexity increases during early succession via colonization by soil microbes followed by vascular plants, effects of biota on mineral weathering and soil formation become more complex. Knowledge of the interactions among groups of organisms and environmental conditions will enable us to better understand landscape evolution. Here, we used experimental columns of unweathered granular basalt to investigate how early successional soil microbes, vascular plants (alfalfa;Medicago sativa), and soil moisture interact to affect both plant performance and mineral weathering. We found that the presence of soil microbes reduced plant growth rates, total biomass, and survival, which suggests that plants and microbes were competing for nutrients in this environment. However, we also found considerable genotype‐specific variation in plant–microbial interactions, which underscores the importance of within‐species genetic variation on biotic interactions. We also found that the presence of vascular plants reduced variability in pH and electrical conductivity, suggesting that plants may homogenize weathering reactions across the soil column. We also show that there is heterogeneity in the abiotic conditions in which microbes, plants, or their combination have the strongest effect on weathering, and that many of these relationships are sensitive to soil moisture. Our findings highlight the importance of interdependent effects of environmental and biotic factors on weathering during initial landscape formation.more » « less
-
Hu, Shuijin (Ed.)Abstract Aims Linkages formed through aquatic–terrestrial subsidies can play an important role in structuring communities and mediating ecosystem functions. Aquatic–terrestrial subsidies may be especially important in nutrient-poor ecosystems, such as the freshwater sand dunes surrounding Lake Michigan. Adult midges emerge from Lake Michigan in the spring, swarm to mate and die. Their carcasses form mounds at the base of plants, where they may increase plant productivity through their nutrient inputs. However, the effect of aquatic–terrestrial subsidies on plant productivity could depend on other biotic interactions. In particular, soil microbes might play a key role in facilitating the conversion of nutrients to plant-available forms or competing for the nutrients with plants. Methods In a greenhouse experiment, we tested how carcasses from lake emergent midges (Chironomidae) and soil microbes independently and interactively influenced the performance of a common dune grass, Calamovilfa longifolia. To determine whether midges influenced abiotic soil properties, we measured how midge additions influenced soil nutrients and soil moisture. Important Findings Midges greatly increased plant biomass, while soil microbes influenced the magnitude of this effect. In the absence of soil microbes plant biomass was seven times greater with midges than without midges. However, in the presence of soil microbes, plant biomass was only three times greater. The effect of midges might be driven by their nutrient inputs into the soil, as midges contained 100 times more N, 10 times more P and 150 times more K than dune soils did. Our results suggest that soil microbes may be competing with plants for these nutrients. In sum, we found that midges can be an important aquatic–terrestrial subsidy that produces strong, positive effects on plant productivity along the shorelines of Lake Michigan, but that the impact of aquatic–terrestrial subsidies must be considered within the context of the complex interactions that take place within ecological communities.more » « less
An official website of the United States government

