skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salinity Conditions during the Larval Life Stage Affect Terrestrial Habitat Choice in Juvenile Wood Frogs (Lithobates sylvaticus)
Anthropogenic salinization is a pervasive pollutant in much of the northeastern United States because of the widespread use of chemical deicing agents on roads. Although studies have examined the physiological effects of salinization on amphibians across life stages, behavioral responses to salinization of habitats are less studied. In this study, we experimentally test how salinity and temperature conditions experienced as larvae affect behavioral and physiological responses as juveniles. We first experimentally test whether juvenile Wood Frogs (Lithobates sylvaticus) can detect and avoid road salt in terrestrial soils and whether this avoidance behavior differs depending on temperature and salinity conditions in which individuals were raised as larvae. We also experimentally test whether temperature and salinity conditions experienced as larvae affect desiccation rates in juvenile Wood Frogs. We found a significant correlation between larval salinity conditions and choice of soil, with frogs raised in high salt aquatic conditions spending the majority of time on high salinity soils and frogs raised in low salt aquatic conditions spending the majority of time on low salinity soils. This behavioral response was muted in frogs raised in elevated temperature conditions. We were unable to detect a correlation between larval treatment and desiccation rate. Our experiments demonstrate that Wood Frogs can detect and respond to salinity levels in terrestrial habitats and that this juvenile response depends on environmental conditions experienced as larvae.  more » « less
Award ID(s):
1754404
PAR ID:
10344377
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of herpetology
ISSN:
0022-1511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On a changing planet, amphibians must respond to weather events shifting in frequency and magnitude, and to how those temperature and precipitation changes interact with other anthropogenic disturbances that modify amphibian habitat. To understand how drastic changes in environmental conditions affect wood frog tadpoles, we tested five temperature manipulations, including Ambient (water temperatures tracking daily air temperatures), Elevated (+ 3 °C above ambient), Nightly (removal of nightly lows), Spike (+ 6 °C above ambient every third week), and Flux (alternating ambient and + 3 °C weekly) crossed with Low Salt (specific conductivity: 109–207 μS-cm) and High Salt (1900–2000 μS-cm). We replicated each of the ten resulting treatments four times. High-salinity conditions produced larger metamorphs than low-salinity conditions. Tadpole survival was reduced only by the Spike treatment (P = 0.017). Elevated temperatures did not shorten larval periods; time to metamorphosis did not differ among temperature treatments (P = 0.328). We retained 135 recently metamorphosed frogs in outdoor terrestrial enclosures for 10 months to investigate larval environment carryover effects. Juvenile frogs grew larger in low-density terrestrial enclosures than high density (P = 0.015) and frogs from Ambient Low Salt larval conditions grew and survived better than frogs from manipulated larval conditions. Frogs from High Salt larval conditions had lower survival than frogs from Low Salt conditions. Our results suggest that anthropogenic disturbances to larval environmental conditions can affect both larval and post-metamorphic individuals, with detrimental carryover effects of high-salinity larval conditions not emerging until the juvenile life stage. 
    more » « less
  2. Greater knowledge of how host–microbiome interactions vary with anthropogenic environmental change and influence pathogenic infections is needed to better understand stress-mediated disease outcomes. We investigated how increasing salinization in freshwaters (e.g. due to road de-icing salt runoff) and associated increases in growth of nutritional algae influenced gut bacterial assembly, host physiology and responses to ranavirus exposure in larval wood frogs (Rana sylvatica). Elevating salinity and supplementing a basic larval diet with algae increased larval growth and also increased ranavirus loads. However, larvae given algae did not exhibit elevated kidney corticosterone levels, accelerated development or weight loss post-infection, whereas larvae fed a basic diet did. Thus, algal supplementation reversed a potentially maladaptive stress response to infection observed in prior studies in this system. Algae supplementation also reduced gut bacterial diversity. Notably, we observed higher relative abundances of Firmicutes in treatments with algae—a pattern consistent with increased growth and fat deposition in mammals—that may contribute to the diminished stress responses to infection via regulation of host metabolism and endocrine function. Our study informs mechanistic hypotheses about the role of microbiome mediation of host responses to infection that can be tested in future experiments in this host–pathogen system 
    more » « less
  3. The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8–1.6 g l −1 Cl − ) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics. 
    more » « less
  4. Abstract Arid and semiarid ecosystems around the world are often prone to both soil salinization and accelerated soil erosion by wind. Soil salinization, the accumulation of salts in the shallow portions of the soil profile, is known for its ability to decreases soil fertility and inhibit plant growth. However, the effect of salts on soil erodibility by wind and the associated dust emissions in the early stages of soil salinization (low salinity conditions) remains poorly understood. Here we use wind tunnel tests to detect the effects of soil salinity on the threshold velocity for wind erosion and dust production in dry soils with different textures treated with salt‐enriched water at different concentrations. We find that the threshold velocity for wind erosion increases with soil salinity. We explain this finding as the result of salt‐induced (physical) aggregation and soil crust formation, and the increasing strength of surface soil crust with increasing soil salinity, depending on soil texture. Even though saline soils showed resistance to wind erosion in the absence of abraders, the salt crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions compared to non‐saline soils. Interestingly, the salinity of the emitted dust is found to be significantly higher (5–10 times more) than that of the parent soil, suggesting that soil salts are preferentially emitted, and airborne dust is enriched of salts. 
    more » « less
  5. Abstract Amphibians undergo a variety of post‐embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH‐based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question:“Are paedomorphs actual larvae?”. To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders. 
    more » « less