skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Salinity stress increases the severity of ranavirus epidemics in amphibian populations
The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8–1.6 g l −1 Cl − ) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jung, Jae U. (Ed.)
    ABSTRACT Ranaviruses such as frog virus 3 (FV3) are large double-stranded DNA (dsDNA) viruses causing emerging infectious diseases leading to extensive morbidity and mortality of amphibians and other ectothermic vertebrates worldwide. Among the hosts of FV3, some are highly susceptible, whereas others are resistant and asymptomatic carriers that can take part in disseminating the infectious virus. To date, the mechanisms involved in the processes of FV3 viral persistence associated with subclinical infection transitioning to lethal outbreaks remain unknown. Investigation in Xenopus laevis has revealed that in asymptomatic FV3 carrier animals, inflammation induced by heat-killed (HK) Escherichia coli stimulation can provoke the relapse of active infection. Since Toll-like receptors (TLRs) are critical for recognizing microbial molecular patterns, we investigated their possible involvement in inflammation-induced FV3 reactivation. Among the 10 different TLRs screened for changes in expression levels following FV3 infection and HK E. coli stimulation, only TLR5 and TLR22, both of which recognize bacterial products, showed differential expression, and only the TLR5 ligand flagellin was able to induce FV3 reactivation similarly to HK E. coli . Furthermore, only the TLR5 ligand flagellin induced FV3 reactivation in peritoneal macrophages both in vitro and in vivo . These data indicate that the TLR5 signaling pathway can trigger FV3 reactivation and suggest a role of secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. IMPORTANCE This study in the amphibian Xenopus laevis provides new evidence of the critical role of macrophages in the persistence of ranaviruses in a quiescent state as well as in the reactivation of these pathogens into a virulent infection. Among the multiple microbial sensors expressed by macrophages, our data underscore the preponderant involvement of TLR5 stimulation in triggering the reactivation of quiescent FV3 in resident peritoneal macrophages, unveiling a mechanistic connection between the reactivation of persisting ranavirus infection and bacterial coinfection. This suggests a role for secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. 
    more » « less
  2. Cooke, Steven (Ed.)
    Abstract Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times more likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles. 
    more » « less
  3. Abstract

    Disease dynamics are governed by variation of individuals, species, and environmental conditions across space and time. In some cases, an alternate reservoir host amplifies pathogen loads and drives disease transmission to less competent hosts in a process called pathogen spillover. Spillover is frequently associated with multi‐host disease systems where a single species is more tolerant of infection and more competent in pathogen transmission compared to other hosts. Pathogen spillover must be driven by biotic factors, including host and community characteristics, yet biotic factors interact with the abiotic environment (e.g., temperature) to create disease. Despite its fundamental role in disease dynamics, the influence of the abiotic environment on pathogen spillover has seldom been examined. Improving our understanding of disease processes such as pathogen spillover hinges on disentangling the effects of interrelated biotic and abiotic factors over space and time. We applied 10 yr of fine‐scale microclimate, disease, and tree community data in a path analysis to investigate the relative influence of biotic and abiotic factors on pathogen spillover for the emerging infectious forest disease sudden oak death (SOD). Disease transmission inSODis primarily driven by the reservoir host California bay laurel, which supports high foliar pathogen loads that spillover onto neighboring oak trees and create lethal canker infections. The foliar pathogen load and susceptibility of oaks is expected to be sensitive to forest microclimate conditions. We found that biotic factors of pathogen load and tree diversity had relatively stronger effects on pathogen spillover compared to abiotic microclimate factors, with pathogen load increasing oak infection and tree diversity reducing oak infection. Abiotic factors still had significant effects, with greater heat exposure during summer months reducing pathogen loads and optimal pathogen conditions during the wet season increasing oak infection. Our results offer clues to possible disease dynamics under future climate change where hotter and drier or warmer and wetter conditions could have opposing effects on pathogen spillover in theSODsystem. Disentangling direct and indirect effects of biotic and abiotic factors affecting disease processes can provide key insights into disease dynamics including potential avenues for reducing disease spread and predicting future epidemics.

    more » « less
  4. Abstract

    Salinity (sodium chloride, NaCl) from anthropogenic sources is a persistent contaminant that negatively affects freshwater taxa. Amphibians can be susceptible to salinity, but some species are innately or adaptively tolerant. Physiological mechanisms mediating tolerance to salinity are still unclear, but changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO) are prime candidates. We exposed larval barred tiger salamanders (Ambystoma mavortium) to environmentally relevant NaCl treatments (<32–4000 mg·L−1) for 24 days to test effects on growth, survival, and waterborne CORT responses. Of those sampled, we also quantified waterborne ALDO from a subset. Using a glucocorticoid antagonist (RU486), we also experimentally suppressed CORT signaling of some larvae to determine if CORT mediates effects of salinity. There were no strong differences in survival among salinity treatments, but salinity reduced dry mass, snout–vent length, and body condition while increasing water content of larvae. High survival and sublethal effects demonstrated that salamanders were physiologically challenged but could tolerate the experimental concentrations. CORT signaling did not attenuate sublethal effects of salinity. Baseline and stress‐induced (after an acute stressor, shaking) CORT were not influenced by salinity. ALDO was correlated with baseline CORT, suggesting it could be difficult to decouple the roles of CORT and ALDO. Future studies comparing ALDO and CORT responses of adaptively tolerant and previously unexposed populations could be beneficial to understand the roles of these hormones in tolerance to salinity. Nevertheless, our study enhances our understanding of the roles of corticosteroid hormones in mediating effects of a prominent anthropogenic stressor.

    more » « less
  5. Abstract

    The symbiont “CandidatusAquarickettsia rohweri” infects a diversity of aquatic hosts. In the threatened Caribbean coral,Acropora cervicornis,Aquarickettsiaproliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution ofAquarickettsiainfecting threatened corals,Ac. cervicornis, andAc. palmataand their hybrid (“Ac. prolifera”).Aquarickettsiawas found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis ofAquarickettsiafound phylogenetic clustering by geographic region, not by coral taxon. Analysis ofAquarickettsiafixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species,Aquarickettsiais undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part toAquarickettsiaproliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals.Aquarickettsiawas not found to significantly codiversify with either the coral animal or the coral’s algal symbiont (Symbiodiniumfitti”). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected withAquarickettsia. Thus, horizontal transmission ofAquarickettsiavia coral mucocytes or an unidentified host is more likely. The prevalence ofAquarickettsiainAc. cervicornisand its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.

    more » « less