which can assure the security of the country boarder and aid in search and rescue missions. This paper offers a novel “handsfree” tool for aerial border surveillance, search and rescue missions using head-mounted eye tracking technology. The contributions of this work are: i) a gaze based aerial boarder surveillance object classification and recognition framework; ii) real-time object detection and identification system in nonscanned regions; iii) investigating the scan-path (fixation and non-scanned) provided by mobile eye tracker can help improve training professional search and rescue organizations or even artificial intelligence robots for searching and rescuing missions. The proposed system architecture is further demonstrated using a dataset of large-scale real-life head-mounted eye tracking data. Keywords—Head-mounted eye tracking technology, Aerial border surveillance, and search and rescue missions
more »
« less
Designing for Exploration and Exploitation in Experimental Search and Rescue Scenarios
Exploration and exploitation are commonly cited in search and rescue scenarios to explain the process by which individuals work in a team and gather information about their environment (exploration) and identify potential solutions and adaptations (exploitation) to pursue successful outcomes. In this paper, we discuss exploration and exploitation as critical design features and highlight the importance of balancing them when designing team-based search and rescue missions. To test the proposed design decisions, we developed a usability study that includes two missions wherein teams consisting of three participants are tasked to rescue victims within a Minecraft-based 3D testbed.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10344414
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 2169-5067
- Page Range / eLocation ID:
- 720 to 725
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Silva, S; Paquete, L (Ed.)Coevolving teams of agents promises effective solutions for many coordination tasks such as search and rescue missions or deep ocean exploration. Good team performance in such domains generally relies on agents discovering complex joint policies, which is particularly difficult when the fitness functions are sparse (where many joint policies return the same or even zero fitness values). In this paper, we introduce Novelty Seeking Multiagent Evolutionary Reinforcement Learning (NS-MERL), which enables agents to more efficiently explore their joint strategy space. The key insight of NS-MERL is to promote good exploratory behaviors for individual agents using a dense, novelty-based fitness function. Though the overall team-level performance is still evaluated via a sparse fitness function, agents using NS-MERL more efficiently explore their joint action space and more readily discover good joint policies. Our results in complex coordination tasks show that teams of agents trained with NS-MERL perform significantly better than agents trained solely with task-specific fitnesses.more » « less
-
null (Ed.)Intelligent robot swarms are increasingly being explored as tools for search and rescue missions. Efficient path planning and robust communication networks are critical elements of completing missions. The focus of this research is to give unmanned aerial vehicles (UAVs) the ability to self-organize a mesh network that is optimized for area coverage. The UAVs will be able to read the communication strength between themselves and all the UAVs it is connected to using RSSI. The UAVs should be able to adjust their positioning closer to other UAVs if RSSI is below a threshold, and they should also maintain communication as a group if they move together along a search path. Our approach was to use Genetic Algorithms in a simulated environment to achieve multi-node exploration with emphasis on connectivity and swarm spread.more » « less
-
Urban Search and Rescue (USAR) missions often involve a need to complete tasks in hazardous environments. In such situations, human-robot teams (HRT) may be essential tools for future USAR missions. Transparency and explanation are two information exchange processes where transparency is real-time information exchange and explanation is not. For effective HRTs, certain levels of transparency and explanation must be met, but how can these modes of team communication be operationalized? During the COVID-19 pandemic, our approach to answering this question involved an iterative design process that factored in our research objectives as inputs and pilot studies with remote participants. Our final research testbed design resulted in converting an in-person task environment to a completely remote study and task environment. Changes to the study environment included: utilizing user-friendly video conferencing tools such as Zoom and a custom-built application for research administration tasks and improved modes of HRT communication that helped us avoid confounding our performance measures.more » « less
-
Urban Search and Rescue (USAR) missions continue to benefit from the incorporation of human–robot teams (HRTs). USAR environments can be ambiguous, hazardous, and unstable. The integration of robot teammates into USAR missions has enabled human teammates to access areas of uncertainty, including hazardous locations. For HRTs to be effective, it is pertinent to understand the factors that influence team effectiveness, such as having shared goals, mutual understanding, and efficient communication. The purpose of our research is to determine how to (1) better establish human trust, (2) identify useful levels of robot transparency and robot explanations, (3) ensure situation awareness, and (4) encourage a bipartisan role amongst teammates. By implementing robot transparency and robot explanations, we found that the driving factors for effective HRTs rely on robot explanations that are context-driven and are readily available to the human teammate.more » « less
An official website of the United States government

