Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is a surgical procedure for alleviating motor symptoms of Parkinson’s Disease (PD). The pattern of DBS (e.g., the electrode pairs used and the intensity of stimulation) is usually optimized by trial and error based on a subjective evaluation of motor function. We tested the hypotheses that DBS releases glutamate in selected basal ganglia nuclei and that the creation of 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions alters glutamate release during DBS in those basal ganglia nuclei. We studied the relationship between a pseudo-random binary sequence of DBS and glutamate levels in the STN itself or in the globus pallidus (GP) in anesthetized, control, and 6-OHDA-treated rats. We characterized the stimulus–response relationships between DBS and glutamate levels using a transfer function estimated using System Identification. Stimulation of the STN elevated glutamate levels in the GP and in the STN. Although the 6-OHDA treatment did not affect glutamate dynamics in the STN during DBS in the STN, the transfer function between DBS in the STN and glutamate levels in the GP was significantly altered by the presence or absence of 6-OHDA-induced lesions. Thus, glutamate responses in the GP in the 6-OHDA-treated animals (but not in themore »
Deep brain stimulation: At your own risk
Deep Brain Stimulation (DBS) surgeries are not new, although they were only granted approval in the U.S. by the U.S. Food and Drug Administration (FDA) in 2002 for advanced Parkinson’s Disease (PD). In 2016, DBS surgery was approved for earlier stages of PD. This does not mean that DBS surgery, generally considered minimally invasive, does not come without commensurate risks. The Mayo Clinic identifies DBS as a serious and potential risky procedure, whereby those eligible must carefully weigh pros and cons. The aim of this paper is to provide a general overview of deep brain stimulation surgery and to present the findings of available informational resources on 14 hospital and medical center web sites that were reviewed, pertaining to surgical procedures and policies: pre-operative to post-operative. The article focuses on critiquing available educational DBS materials and their adequacy in addressing potential risks of DBS surgery. The findings indicate that hospital informational resources on the DBS surgical technique reaffirm each other’s educational materials and that they positively inform patient decision-making. These factors can be linked to better post-operative recovery. However, the materials provided by the hospitals overemphasize the positive aspects of DBS with relatively little detail about potential side effects. This more »
- Award ID(s):
- 1828010
- Publication Date:
- NSF-PAR ID:
- 10344521
- Journal Name:
- 2021 IEEE International Symposium on Technology and Society (ISTAS)
- Page Range or eLocation-ID:
- 1 to 7
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The unprecedented shock caused by the COVID-19 pandemic has severely influenced the delivery of regular healthcare services. Most non-urgent medical activities, including elective surgeries, have been paused to mitigate the risk of infection and to dedicate medical resources to managing the pandemic. In this regard, not only surgeries are substantially influenced, but also pre- and post-operative assessment of patients and training for surgical procedures have been significantly impacted due to the pandemic. Many countries are planning a phased reopening, which includes the resumption of some surgical procedures. However, it is not clear how the reopening safe-practice guidelines will impact the quality of healthcare delivery. This perspective article evaluates the use of robotics and AI in 1) robotics-assisted surgery, 2) tele-examination of patients for pre- and post-surgery, and 3) tele-training for surgical procedures. Surgeons interact with a large number of staff and patients on a daily basis. Thus, the risk of infection transmission between them raises concerns. In addition, pre- and post-operative assessment also raises concerns about increasing the risk of disease transmission, in particular, since many patients may have other underlying conditions, which can increase their chances of mortality due to the virus. The pandemic has also limited the timemore »
-
Scientists who perform major survival surgery on laboratory animals face a dual welfare and methodological challenge: how to choose surgical anesthetics and post-operative analgesics that will best control animal suffering, knowing that both pain and the drugs that manage pain can all affect research outcomes. Scientists who publish full descriptions of animal procedures allow critical and systematic reviews of data, demonstrate their adherence to animal welfare norms, and guide other scientists on how to conduct their own studies in the field. We investigated what information on animal pain management a reasonably diligent scientist might find in planning for a successful experiment. To explore how scientists in a range of fields describe their management of this ethical and methodological concern, we scored 400 scientific articles that included major animal survival surgeries as part of their experimental methods, for the completeness of information on anesthesia and analgesia. The 400 articles (250 accepted for publication pre-2011, and 150 in 2014–15, along with 174 articles they reference) included thoracotomies, craniotomies, gonadectomies, organ transplants, peripheral nerve injuries, spinal laminectomies and orthopedic procedures in dogs, primates, swine, mice, rats and other rodents. We scored articles for Publication Completeness (PC), which was any mention of use ofmore »
-
The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
-
Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale ofmore »