skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reservoir Rescue: A Community-connected Elementary Water Filtration Engineering Unit (Resource Exchange)
In the ConnecTions in the Making project, researchers and district partners work to develop and study community-connected, integrated science and engineering curriculum units that support diverse elementary students’ science and engineering ideas, practices, and attitudes. In the community-connected units, students in the third, fourth, and fifth grades use human-centered design strategies to prototype and share functional solutions to a design challenge rooted in the students’ local community while also exploring scientific explanations of the phenomena and mechanisms related to the challenge. One of these units is “Reservoir Rescue,” a fifth grade Environmental Engineering unit comprised of 12 lessons, approximately 1 hour each, including 2 lessons to launch the unit, 4 inquiry lessons, 4 engineering design lessons that build to the final design challenge, and 2 lessons to prepare for and host a design exposition.  more » « less
Award ID(s):
1657218
PAR ID:
10344604
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the ConnecTions in the Making project, researchers and district partners work to develop and study community-connected, integrated science and engineering curriculum units that support diverse elementary students’ science and engineering ideas, practices, and attitudes. In the community-connected units, students in the third, fourth, and fifth grades use human-centered design strategies to prototype and share functional solutions to a design challenge rooted in the students’ local community while also exploring scientific explanations of the phenomena and mechanisms related to the challenge. One of these units is “Make Way for Trains,” a fourth grade geotechnical engineering unit comprised of 8 lessons, approximately 1 hour each, including a launch lesson, 6 alternating inquiry and engineering design lessons that build to the final design challenge, and a final design exposition. 
    more » « less
  2. In the ConnecTions in the Making project, researchers and district partners work to develop and study community-connected, integrated science and engineering curriculum units that support diverse elementary students’ science and engineering ideas, practices, and attitudes. In the community-connected units, students in the third, fourth, and fifth grades use human-centered design strategies to prototype and share functional solutions to a design challenge rooted in the students’ local community while scientifically exploring the phenomena and mechanisms related to the challenge. One of the units is “Accessible Playground Design,” a grade three unit that engages students in designing a piece of accessible playground equipment. It comprises 10 lessons, approximately 1 hour each, including a launch lesson, followed by four inquiry and four engineering design lessons, and a final design exposition. 
    more » « less
  3. Current and future Science, Technology, Engineering, Mathematics, and Medicine (STEMM) students must grapple with one of the most pressing scientific issues of the century: climate change. Teaching about climate change with our youngest learners requires preparation, and planting roots to foster growth, innovation, and sustainability. Building a community garden with elementary students is a way to act towards climate justice as it reminds us about how all living things are part of an interconnected system. This article describes a fifth-grade climate change action project that was part of a unit that aligns with the state science standards and the Next Generation Science Standards (NGSS), focused on how science learning can be used to protect the Earth’s resources and local environments. The anchoring phenomenon and lessons of the unit highlighted the annual migration of the monarch butterflies, a local endangered species and phenomenon. By planting milkweed in the garden, students learned about migration, life cycles, greenhouse gases, and the survival of monarch butterflies. This article provides educators with ideas and practical suggestions for building a garden and an overview of how the project can be implemented within a school community. 
    more » « less
  4. Engineering is becoming increasingly cross-disciplinary, requiring students to develop skills in multiple engineering disciplines (e.g., mechanical engineering students having to learn the basics of electronics, instrumentation, and coding) and interprofessional skills to integrate perspectives from people outside their field. In the workplace, engineering teams are frequently multidisciplinary, and often, people from outside of engineering are part of the team that brings a product to market. Additionally, teams are often diverse in age, race, gender, and in other areas. Teams that creatively utilize the contrasting perspectives and ideas arising from these differences can positively affect team performance and generate solutions effective for a broader range of users. These trends suggest that engineering education can benefit from having engineering students work on team projects that involve a blend of cross-disciplinary and mixed-aged collaborations. An NSF-funded project set out to explore this idea by partnering undergraduate engineering students enrolled in a 300-level electromechanical systems course with preservice teachers enrolled in a 400-level educational technology course to plan and deliver robotics lessons to fifth graders at a local school. Working in small teams, students designed, built, and coded bio-inspired robots. The collaborative activities included: (1) training with Hummingbird Bit hardware (Birdbrain Technologies, Pittsburgh, PA) (e.g. sensors, servo motors) and coding platform, (2) preparing robotics lessons for fifth graders that explained the engineering design process, and (3) guiding the fifth graders in the design of their robots. Additionally, each engineering student designed a robot following the theme developed with their education student and fifth-grade partners. 
    more » « less
  5. This innovative practice work in progress paper presents the Biologically Inspired Design for Engineering Education (BTRDEE) project, to create socially relevant, accessible, highly-contextualized biologically inspired design experiences that can be disseminated to high school audiences engineering audiences in Georgia and nationally. Curriculum units arc 6-10 weeks in duration and will meet many standards for high school engineering courses in Georgia. There will be three curriculum units (one for each engineering course in the 3-course pathway), each building skills in engineering design and specific skills for BID. Currently in its second year, BIRDEE has developed its first unit of curriculum and has hosted its first professional development with 4 pilot teachers in the summer of 2020. The BIRDEE curriculum situates challenges within socially relevant contexts and provides cutting-edge biological scenarios to ignite creative and humanistic engineering experiences to 1) drive greaterengagement in engineering, particularly among women, 2) improve student engineering skills, especially problem definition and ideation skills, and 3) increase students awareness of the connection and impacts between the engineered and living worlds. This paper describes the motivation for the BIRDEE project, the learning goals for the curriculum, and a description of the first unit. We provide reflections and feedback from teacher work and focus groups during our summer professional development and highlight the challenges associated with building BID competency across biology and engineering to equip teachers with the skills they need to teach the BIRDEE units. These lessons can be applied to teaching BID more broadly, as its multidisciplinary nature creates challenges (and opportunities) for teaching and learning engineering design. 
    more » « less