skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequent, Timed Coding Tests for Training and Assessment of Full-Stack Web Development Skills: An Experience Report
This experience report describes the use of frequent, timed coding tests in a project-intensive software engineering course in which students first learn full-stack web development using Ruby on Rails and then apply their skills in a team project. The goal of the skills tests was twofold: (1) to help motivate students to engage in distributed practice and, thus, gain adequate coding skills to be an effective team member during the team project and (2) to accurately assess whether students had acquired the requisite skills and, thereby, catch deficiencies early, while there was still time to address them. Regarding the first goal, although several students indicated that the tests motivated them to engage in substantial practice coding, it was ultimately inconclusive as to the extent of the tests' impact on students' distributed practice behavior and on their preparation for the project. Regarding the second goal, the skills testing approach was indeed considerably more effective than graded homework assignments for assessing coding skill and detecting struggling students early. Lessons learned from our experiences included that students had significant concerns about the strict time limit on the tests, that the tests caused a spike in mid-semester withdrawals from the course that disproportionately impacted students from underrepresented groups, and that detecting struggling students was one thing, but effectively helping them catch up was a whole other challenge.  more » « less
Award ID(s):
1822816
PAR ID:
10344619
Author(s) / Creator(s):
Date Published:
Journal Name:
SIGCSE '21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
24-30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A.I.; Cortés-Zavala, J.C.; Ruiz-Arias, P.M. (Ed.)
    Collective Argumentation Learning and Coding (CALC) is a project focused on providing teachers with strategies to engage students in collective argumentation in mathematics, science, and coding. Collective argumentation can be characterized by any instance where multiple people (teachers and students) work together to establish a claim and provide evidence to support it (Conner et al., 2014b). Collective argumentation is an effective approach for promoting critical and higher order thinking and supporting students’ ability to articulate and justify claims. The goal of the CALC project is to help elementary school teachers extend the use of collective argumentation from teaching mathematics and science to teaching coding. Doing so increases the probability that teachers will integrate coding in regular classroom instruction, making it accessible to all students. This project highlighted Gloria (pseudonym), a fourth-grade teacher from Cohort 1 because of the extent to which she went from fear of coding to fluent implementation. Initially, Gloria was comfortable engaging her students in argumentation, explaining they already used it in mathematics with Cognitively Guided Instruction (CGI). However, she was “terrified” about learning to code because she didn’t view herself as proficient with technology. She was willing to overcome her fear of coding because she saw the value in providing her students with coding experiences that would help them develop the necessary skills for our increasingly technological society. In the course of three months, Gloria’s instruction progressed from using simple coding activities to more sophisticated coding platforms. This progression in her coding instruction paralleled the change in her personal feelings about coding as she moved from “terrified” to “comfortable with it”. 
    more » « less
  2. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  3. Working in teams has been recognized as an essential 21st-century skill. Introducing teamwork in the undergraduate classroom is crucial as it allows the students to work with individuals with diverse skillsets and learn from one another. It is important to note that just creating a team and allowing the students to work does not foster teamwork skills. Inculcating teamwork skills requires a consciousness on the part of the instructor and the teaching assistants. Pedagogies such as cooperative learning have been recognized as effective in helping students develop teamwork skills. We introduced a joint reflection on action approach to developing teamwork skills among novice students as part of a sophomore-level systems analysis and design course. In this evidence-based practice paper, we report on students’ reflections regarding their perceptions of teamwork. This study approaches the following research questions: What are students' reflections about the role of communication while working in teams in a cooperative project-based learning environment? The guiding pedagogical framework for this course is cooperative learning. The course requires the students to work in teams in a semester-long software development project. To elicit reflection on action about their teamwork experience. Specifically, we exposed students to concrete experiences as part of their teamwork interactions, which became the basis for observations and reflections. For this, the semester-long project was complemented with one reflection-on-action activity. In the activity, students were asked to watch a video of secrets of successful teamwork and were asked to reflect on their perceptions about the role of communication within teams. The students’ reflections on the activity were analyzed using qualitative inductive thematic analysis to understand the students’ perceptions regarding teamwork and communication within teams. 
    more » « less
  4. Working in teams has been recognized as an essential 21st-century skill. Introducing teamwork in the undergraduate classroom is crucial as it allows the students to work with individuals with diverse skillsets and learn from one another. It is important to note that just creating a team and allowing the students to work does not foster teamwork skills. Inculcating teamwork skills requires a consciousness on the part of the instructor and the teaching assistants. Pedagogies such as cooperative learning have been recognized as effective in helping students develop teamwork skills. We introduced a joint reflection on action approach to developing teamwork skills among novice students as part of a sophomore-level systems analysis and design course. In this evidence-based practice paper, we report on students’ reflections regarding their perceptions of teamwork. This study approaches the following research questions: What are students' reflections about the role of communication while working in teams in a cooperative project-based learning environment? The guiding pedagogical framework for this course is cooperative learning. The course requires the students to work in teams in a semester-long software development project. To elicit reflection on action about their teamwork experience. Specifically, we exposed students to concrete experiences as part of their teamwork interactions, which became the basis for observations and reflections. For this, the semester-long project was complemented with one reflection-on-action activity. In the activity, students were asked to watch a video of secrets of successful teamwork and were asked to reflect on their perceptions about the role of communication within teams. The students’ reflections on the activity were analyzed using qualitative inductive thematic analysis to understand the students’ perceptions regarding teamwork and communication within teams. 
    more » « less
  5. Commitment is a multi-dimensional construct that has been extensively researched in the context of organizations. Organizational and professional commitment have been positively associated with technical performance, client service, attention to detail, and degree of involvement with one’s job. However, there is a relative dearth of research in terms of team commitment, especially in educational settings. Teamwork is considered a 21stcentury skill and higher education institutions are focusing on helping students to develop teamwork skills by applied projects in the coursework. But studies have demonstrated that creating a team is not enough to help students build teamwork skills. Literature supports the use of team contracts to bolster commitment, among team members. However, the relationship between team contracts and team commitment has not been formally operationalized.This research category study presents a mixed-methods approach towards characterizing and operationalizing team commitment exhibited by students enrolled in a sophomore-level systems analysis and design course by analyzing team contracts and team retrospective reflections. The course covers concepts pertaining to information systems development and includes a semester-long team project where the students work together in four or five member teams to develop the project deliverables. The students have prior software development experiences through an introductory systems development course as well as multiple programming courses. The data for this study was collected through the team contracts signed by students belonging to one of the 23 teams of this course. The study aims to answer the following research question: How can team commitment be characterized in a sophomore-level system analysis and design course among the student teams?A rubric was developed to quantify the team commitment levels of students based on their responses on the team contracts. Students were classified as high or low commitment based on the rubric scores. The emergent themes of high and low commitment teams were also presented. The results indicated that the high commitment teams were focused on setting goals, effective communication, and having mechanisms in place for timely feedback and improvement. On the other hand, low commitment teams did not articulate the goals of the project, they demonstrated a lack of dedication for attending team meetings regularly, working as a team, and had a lack of proper coordination while working together. 
    more » « less