Abstract Investigations into the melting layer (ML) of winter storms have revealed small-scale fluctuations in the horizontal wind that could significantly affect the surface precipitation type (p-type) and the evolution of the ML. Despite previous evidence of such fluctuations, essential questions remain concerning their characteristics and the forces driving them. Therefore, this study characterizes small-scale horizontal wind fluctuations (<1 km in length with perturbation magnitudes < 3 m s−1) and their environments within the ML of winter storms. This analysis uses data from a scanning X-band Doppler radar collected during the Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX), conducted during February and March 2022. We present three case studies where small-scale horizontal wind fluctuations are identified using along-radial and along-azimuthal radial velocity perturbations. These cases cover the range of environmental conditions observed during WINTRE-MIX, including (i) a descending ML with change in surface p-type from snow to rain, (ii) a steady ML with a surface p-type transition from freezing rain to rain due to surface cold air erosion, and (iii) a steady ML with a surface p-type transition from freezing rain to ice pellets due to surface cold air advection. Forcing mechanisms for small-scale wind fluctuations during each case are attributed to static instability, vertically trapped gravity waves, and/or shear instability inferred from rawinsonde data, HRRR analysis, and radar data. Our findings suggest that static instability, gravity waves, and shear instability drive the ML’s small-scale wind fluctuations and may influence surface precipitation-type transitions. Significance StatementThis research aims to enhance our understanding of horizontal motions (<1 km in length) within melting layers (MLs) of winter storms and their underlying causes. This study uses radar data to detect differences in horizontal motion within the ML of three different winter storms. Weather balloon observations and output from computer weather forecasts are then used to distinguish between horizontal motions generated by convection, vertically trapped gravity waves, or shear. Our findings reveal that horizontal motions within the ML are generated by different forcing mechanisms within different storms and that horizontal motions may influence the surface p-type.
more »
« less
Detecting wave features in Doppler radial velocity radar observations
Abstract. Mesoscale, wave-like perturbations in horizontal air motions in the troposphere (velocity waves) are associated with vertical velocity, temperature, and pressure perturbations that can initiate or enhance precipitation within clouds. The ability to detect velocity waves from horizontal wind information is an important tool for atmospheric research and weather forecasting. This paper presents a method to routinely detect velocity waves using Doppler radial velocity data from a scanning weather radar. The method utilizes the difference field between consecutive position plan indicator (PPI) scans at a given elevation angle. Using the difference between fields a few minutes apart highlights small-scale perturbations associated with waves because the larger-scale wind field changes more slowly. Image filtering retains larger contiguous velocity bands and discards noise. Wave detection scales are limited by the size of the temporal difference relative to the wave motion and the radar resolution volume size.
more »
« less
- Award ID(s):
- 1905736
- PAR ID:
- 10344639
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 1689 to 1702
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens and hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesoscale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four-dimensional wind field inversion method that makes use of Gaussian process regression (GPR), which is a nonparametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as 1 d of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model hyperparameters. The latter GPR approach has been applied to a 24 h dataset and shown to compare well to previously used homogeneous and gradient methods. Small-scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20–50 km. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies.more » « less
-
Abstract Data from an air–sea interaction tower are used to close the turbulent kinetic energy (TKE) budget in the wave-affected surface layer of the upper ocean. Under energetic wind forcing with active wave breaking, the dominant balance is between the dissipation rate of TKE and the downward convergence in vertical energy flux. The downward energy flux is driven by pressure work, and the TKE transport is upward, opposite to the downgradient assumption in most turbulence closure models. The sign and the relative magnitude of these energy fluxes are hypothesized to be driven by an interaction between the vertical velocity of Langmuir circulation (LC) and the kinetic energy and pressure of wave groups, which is the result of small-scale wave–current interaction. Consistent with previous modeling studies, the data suggest that the horizontal velocity anomaly associated with LC refracts wave energy away from downwelling regions and into upwelling regions, resulting in negative covariance between the vertical velocity of LC and the pressure anomaly associated with the wave groups. The asymmetry between downward pressure work and upward TKE flux is explained by the Bernoulli response of the sea surface, which results in groups of waves having a larger pressure anomaly than the corresponding kinetic energy anomaly, consistent with group-bound long-wave theory.more » « less
-
Abstract A set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high wave events lasting several days — one from a remotely generated swell and another associated with local wind-generated waves — and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions ( dx = 270 m and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave height H S is relatively large (> 4.2m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophy ζ 2 budget in cyclonic regions ( ζ/f > 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll-cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.more » « less
-
Abstract The ERA5 reanalysis with hourly time steps and ∼30 km horizontal resolution resolves a substantially larger fraction of the gravity wave spectrum than its predecessors. Based on a representation of the two-sided zonal wavenumber–frequency spectrum, we show evidence of gravity wave signatures in a suite of atmospheric fields. Cross-spectrum analysis reveals (i) a substantial upward flux of geopotential for both eastward- and westward-propagating waves, (ii) an upward flux of westerly momentum in eastward-propagating waves and easterly momentum in westward-propagating waves, and (iii) anticyclonic rotation of the wind vector with time—all characteristics of vertically propagating gravity and inertio-gravity waves. Two-sided meridional wavenumber–frequency spectra, which are computed along individual meridians and then zonally averaged, exhibit characteristics similar to the spectra computed on latitude circles, indicating that these waves propagate in all directions. The three-dimensional structure of these waves is also documented in composites of the temperature field relative to grid-resolved, wave-induced downwelling events at individual reference grid points along the equator. It is shown that the waves radiate outward and upward relative to the respective reference grid points, and their amplitude decreases rapidly with time. Within the broad continuum of gravity wave phase speeds there are preferred values around ±49 and ±23 m s −1 , the former associated with the first baroclinic mode in which the vertical velocity perturbations are of the same sign throughout the depth of the troposphere, and the latter with the second mode in which they are of opposing polarity in the lower and upper troposphere.more » « less
An official website of the United States government

