Porous graphene and graphite are increasingly utilized in electrochemical energy storage and solar-thermal applications due to their unique structural and thermal properties. In this study, we conduct a comprehensive analysis of the lattice thermal transport and spectral phonon characteristics of holey graphite and multilayer graphene. Our results reveal that phonon modes propagating obliquely with respect to the graphene basal planes are the primary contributors to cross-plane thermal transport. These modes exhibit a predominantly ballistic nature, resulting in an almost linear increase in cross-plane thermal conductivity with the number of layers. The presence of nanoholes in graphene induces a broadband suppression of cross-plane phonon transport, whereas lithium-ion intercalation shows potential to enhance it. These findings provide critical insights into the mechanisms governing cross-plane heat conduction in key graphene-based structures, offering valuable guidance for thermal management and engineering of van der Waals materials.
more »
« less
Scalable nanomanufacturing of holey graphene via chemical etching: an investigation into process mechanisms
Graphene with in-plane nanoholes, named holey graphene, shows great potential in electrochemical applications due to its fast mass transport and improved electrochemical activity. Scalable nanomanufacturing of holey graphene is generally based on chemical etching using hydrogen peroxide to form through-the-thickness nanoholes on the basal plane of graphene. In this study, we probe into the fundamental mechanisms of nanohole formation under peroxide etching via an integrated experimental and computational effort. The research results show that the growth of nanoholes during the etching of graphene oxide is achieved by a three-stage reduction–oxidation–reduction procedure. First, it is demonstrated that vacancy defects are formed via a partial reduction-based pretreatment. Second, hydrogen peroxide reacts preferentially with the edge-sites of defect areas on graphene oxide sheets, leading to the formation of various oxygen-containing functional groups. Third, the carbon atoms around the defects are removed along with the neighboring carbon atoms via reduction. By advancing the understanding of process mechanisms, we further demonstrate an improved nanomanufacturing strategy, in which graphene oxide with a high density of defects is introduced for peroxide etching, leading to enhanced nanohole formation.
more »
« less
- PAR ID:
- 10344652
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 4762 to 4769
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Graphene-based electrodes have been extensively investigated for supercapacitor applications. However, their ion diffusion efficiency is often hindered by the graphene restacking phenomenon. Even though holey graphene is fabricated to address this issue by providing ion transport channels, those channels could still be blocked by densely stacked graphene nanosheets. To tackle this challenge, this research aims at improving the ion diffusion efficiency of microwave-synthesized holey graphene films by tuning the water interlayer spacer towards the improved supercapacitor performance. By controlling the vacuum filtration during graphene-based electrode fabrication, we obtain dry films with dense packing and wet films with sparse packing. The SEM images reveal that 20 times larger interlayer distance is constructed in the wet film compared to that in the dry counterpart. The holey graphene wet film delivers a specific capacitance of 239 F/g, ~82% enhancement over the dry film (131 F/g). By an integrated experimental and computational study, we quantitatively show that the interlayer spacing in combination with the nanoholes in the basal plane dominates the ion diffusion rate in holey graphene-based electrodes. Our study concludes that novel hierarchical structures should be further considered even in holey graphene thin films to fully exploit the superior advantages of graphene-based supercapacitors.more » « less
-
Abstract Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built‐in nanohole arrays at deep‐subwavelength scale (6 nm) is demonstrated using a two‐step fabrication method. The nanohole arrays are formed first by the growth of a high‐quality two‐phase (i.e., Au–TiN) vertically aligned nanocomposite template, followed by selective wet‐etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half‐way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon‐enhanced sensing applications.more » « less
-
Reaction of bis(dicyclohexylphosphino)ethane dioxide with hydrogen peroxide leads to an extended crystalline network based on the formation of hydrogen bonds with the PO groups of the diphosphine dioxide. The structural motif of the network is characterized by X-ray diffraction. A new selective synthesis for an industrially important MEKPO (methyl ethyl ketone peroxide) dimer is described. The dimer is created by reaction of dppe dioxide (bis(diphenylphosphino)ethane dioxide) with butanone and hydrogen peroxide. This peroxide is stabilized by forming strong hydrogen bonds to the phosphine oxide groups within an extended network, which has been characterized by single crystal X-ray diffraction. Reaction of acetylacetone with hydrogen peroxide, irrespective of the presence of phosphine oxide, leads to the stereoselective formation of two dioxolanes. Both cyclic peroxides have been obtained in crystalline forms suitable for single crystal X-ray diffractions.more » « less
-
In this paper, we theoretically demonstrate a dual-band independently tunable absorber consisting of a stacked graphene nanodisk and graphene layer with nanohole structure, and a metal reflector spaced by insulator layers. This structure exhibits a dipole resonance mode in graphene nanodisks and a quadrupole resonance mode in the graphene layer with nanoholes, which results in the enhancement of absorption over a wide range of incident angles for both TE and TM polarizations. The peak absorption wavelength is analyzed in detail for different geometrical parameters and the Fermi energy levels of graphene. The results show that both peaks of the absorber can be tuned dynamically and simultaneously by varying the Fermi energy level of graphene nanodisks and graphene layer with nanoholes structure. In addition, one can also independently tune each resonant frequency by only changing the Fermi energy level of one graphene layer. Such a device could be used as a chemical sensor, detector or multi-band absorber.more » « less
An official website of the United States government

