skip to main content


Title: Large‐Scale Plasmonic Hybrid Framework with Built‐In Nanohole Array as Multifunctional Optical Sensing Platforms
Abstract

Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built‐in nanohole arrays at deep‐subwavelength scale (6 nm) is demonstrated using a two‐step fabrication method. The nanohole arrays are formed first by the growth of a high‐quality two‐phase (i.e., Au–TiN) vertically aligned nanocomposite template, followed by selective wet‐etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half‐way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon‐enhanced sensing applications.

 
more » « less
Award ID(s):
1565822
NSF-PAR ID:
10456353
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
11
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plasmonic nanostructures exhibit intriguing optical properties due to spectrally selective plasmon resonance and thus have broad applications, including biochemical sensing and photoelectric detections. However, excited plasmons are often strongly influenced by the substrates supporting the metallic nanostructures, which not only weakens the intrinsic plasmon coupling effect, but also results in a great reduction of optical near‐field enhancement. Here, a plasmonic nanostructure combining collapsible Au‐nanofingers with selective‐etching that enables Au to be suspended is demonstrated, thus avoiding the undesirable influence of the substrates on the local near‐field distribution and forming symmetric electromagnetic‐field enhancements at both the top and bottom surfaces. The polymer support of the Au‐nanofingers is selectively etched by oxygen plasma, while the Au‐cap retains its original size. After an ultrathin dielectric coating is applied on the Au‐nanofingers, suspended Au‐caps with extremely small dielectric gaps are formed via the collapse of neighboring Au‐nanofingers by exposing them to ethanol. These nanostructures can provide a surface‐enhanced Raman scattering (SERS) enhancement of up to ≈109, which is nearly twice that in the nonsuspended system. As a highly active SERS substrate, the label‐free detection of low‐concentration harmful plastic phthalates in a child's urine without any pretreatment is successfully demonstrated, which suggests that this method is suitable for medical prediagnosis.

     
    more » « less
  2. Artificial polariton bandgaps at infrared frequencies are investigated by exploiting the strong coupling of electromagnetic waves with induced electric dipoles in two‐dimensional (2D) indium tin oxide nanorod arrays (ITO‐NRAs). The electric dipoles originate from the collective oscillations of free electrons within the individual ITO nanorods undergoing plasmonic resonance. Controlling the near‐field interactions among the neighboring electric dipoles allows for manipulation of the collective polariton modes that are manifested as a polariton bandgap. A theoretical model is developed to understand the coupled phenomena underlying the unique characteristics of plasmon–polariton bandgaps. With high‐degree geometric control of the ITO‐NRAs, it is experimentally demonstrated that reducing the spacing between ITO nanorods in a square array strengthens the near‐field interactions and thus results in a redshift as well as broadening of the polariton bandgap. Furthermore, arranging ITO‐NRAs in a rectangular lattice breaks the symmetry with respect to the principle axis, which leads to a splitting of the collective polariton modes owing to the competition between the quasi‐longitudinally and quasi‐transversely coupled plasmon–polariton modes. The work highlights the use of a classical dipole coupling method for scaling polariton bandgaps to the infrared in artificial plasmonic lattices, thereby offering a new design dimension for infrared sensing, absorbers, and optical communications.

     
    more » « less
  3. Abstract

    Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.

     
    more » « less
  4. Abstract

    Magneto‐optical (MO) coupling incorporates photon‐induced change of magnetic polarization that can be adopted in ultrafast switching, optical isolators, mode convertors, and optical data storage components for advanced optical integrated circuits. However, integrating plasmonic, magnetic, and dielectric properties in one single material system poses challenges since one natural material can hardly possess all these functionalities. Here, co‐deposition of a three‐phase heterostructure composed of a durable conductive nitride matrix with embedded core–shell vertically aligned nanopillars, is demonstrated. The unique coupling between ferromagnetic NiO core and atomically sharp plasmonic Au shell enables strong MO activity out‐of‐plane at room temperature. Further, a template growth process is applied, which significantly enhances the ordering of the nanopillar array. The ordered nanostructure offers two schemes of spin polarization which result in stronger antisymmetry of Kerr rotation. The presented complex hybrid metamaterial platform with strong magnetic and optical anisotropies is promising for tunable and modulated all‐optical‐based nanodevices.

     
    more » « less
  5. Due to the facile manipulation and non-invasive nature of light-triggered release, it is one of the most potent ways to selectively and remotely deliver a molecular target. Among the various carrier platforms, plasmonic nanoparticles possess advantages such as enhanced cellular uptake and easy loading of “cargo” molecules. Two general strategies are currently utilized to achieve light-induced molecule release from plasmonic nanoparticles. The first uses femtosecond laser pulses to directly break the bond between the nanoparticle and the loaded target. The other requires significant photo-thermal effects to weaken the interaction between the cargo molecules and nanoparticle-attached host molecules. Different from above mechanisms, herein, we introduce a new light-controlled molecular-release method by taking advantage of a plasmon-driven catalytic reaction at the particle surface. In this strategy, we link the target to a plasmon responsive molecule, 4-aminobenzenethiol (4-ABT), through the robust and simple EDC coupling reaction and subsequently load the complex onto the particles via the strong Au–thiol interaction. Upon continuous-wave (CW) laser illumination, the excited surface plasmon catalyzes the formation of 4,4′-dimercaptoazobenzenethiol (DMAB) and simultaneously releases the loaded molecules with high efficiency. This method does not require the use of high-power pulsed lasers, nor does it rely on photo-thermal effects. We believe that plasmon-driven release strategies open a new direction for the designing of next-generation light-triggered release processes. 
    more » « less