Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem.
more »
« less
Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality
Many studies suggest that water quality parameters can be estimated by applying statistical and machine learning methods using remote sensing or in-situ data. However, identifying best practices for implementing solutions appears to be done on a case-by-case basis. In our case, we have in-situ data that covers a large period, but only small areas of Biscayne Bay, Florida. In this paper, we combine available in-situ data with remote sensing data captured by Landsat 8 OLI-TIRS Collection 2 Level 2(L8), Sentinel-2 L2A(S2), and Sentinel-3 OLCI L1B(S3). The combined data set is for use in a water quality parameter estimation application. Our contributions are two-fold. First, we present a pipeline for data collection, processing, and co-location that results in a usable data set of combined remote sensing and in-situ data. Second, we propose a classification model using the combined data set to identify areas of interest for future data collection missions based on chlorophyll-a in-situ measurements. To further prove our methodology, we conduct a data collection mission using one of the predicted paths from our model.
more »
« less
- PAR ID:
- 10344695
- Date Published:
- Journal Name:
- OCEANS 2022 - Chennai
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Excessive algae growth can lead to negative consequences for ecosystem function, economic opportunity, and human and animal health. Due to the cost‐effectiveness and temporal availability of satellite imagery, remote sensing has become a powerful tool for water quality monitoring. The use of remotely sensed products to monitor water quality related to algae and cyanobacteria productivity during a bloom event may help inform management strategies for inland waters. To evaluate the ability of satellite imagery to monitor algae pigments and dissolved oxygen conditions in a small inland lake, chlorophyll‐a, phycocyanin, and dissolved oxygen concentrations are measured using a YSI EXO2 sonde during Sentinel‐2 and Sentinel‐3 overpasses from 2019 to 2022 on Lake Mendota, WI. Machine learning methods are implemented with existing algorithms to model chlorophyll‐a, phycocyanin, and Pc:Chla. A novel machine learning‐based dissolved oxygen modeling approach is developed using algae pigment concentrations as predictors. Best model results based on Sentinel‐2 (Sentinel‐3) imagery achieved R2scores of 0.47 (0.42) for chlorophyll‐a, 0.69 (0.22) for phycocyanin, and 0.70 (0.41) for Pc:Chla. Dissolved oxygen models achieved anR2of 0.68 (0.36) when applied to Sentinel‐2 (Sentinel‐3) imagery, and Pc:Chla is found to be the most important predictive feature. Random forest models are better suited to water quality estimations in this system given built in methods for feature selection and a relatively small data set. Use of these approaches for estimation of Pc:Chla and dissolved oxygen can increase the water quality information extracted from satellite imagery and improve characterization of algae conditions among inland waters.more » « less
-
Abstract Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future.more » « less
-
Abstract: Aim In this study, we present the results of a project which used Landsat Collection 2 Surface Reflectance data and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) data to develop a machine learning model to estimate Secchi depth in Lake Yojoa, Honduras. Methods Satellite remote sensing data obtained within a 7-day window of an in situ measurement were matched with in situ Secchi depth measurements and were partitioned into train-test-validate data sets for model development. Results The machine learning model had good (R2= 0.57) agreement and reasonable uncertainty (MAE = 0.58 m) between remotely estimated and in situ observed Secchi depth. Application of the machine learning model increased the monitoring record of Lake Yojoa from 6 years of measured data to a 23-year record. Conclusions This model demonstrates the utility of coordinating in situ sampling schedules of short-term research projects with satellite imagery acquisition schedules in order to increase the temporal coverage of remote sensing derived estimates of water quality in understudied lakes.more » « less
-
Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical DataDeveloping the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM imagery, and simulated GEDI data were selected for the characterization of diversity in four study areas. The integration of ancillary data can improve biodiversity metrics predictions. Random Forest (RF) regression models were suitable for estimating tree species diversity indices from remote sensing variables. From these models, we generated diversity index maps for the entire Cerrado using all GEDI data available in orbit. For all models, the structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon model, two GEDI variables were selected. Overall, the models indicated performances for species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model had the lowest value among the diversity indices (31.98%). Our results suggested that the developed models are valuable tools for assessing species diversity in tropical savanna ecosystems, although each model can be chosen based on the objectives of a given study, the target amount of performance/error, and the availability of data.more » « less