Abstract Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution. First, we show how any evolutionary game may be translated into two quantitative genetic selection gradients, nonsocial and social selection, which may be used to predict evolutionary change from a single round of the game. We show that synergistic fitness effects may alter predicted selection gradients, causing changes in magnitude and sign as the population mean evolves. Second, we show how evolutionary games involving plastic behavioral responses to partners can be modeled using indirect genetic effects, which describe how trait expression changes in response to genes in the social environment. We demonstrate that repeated social interactions in models of reciprocity generate indirect effects and conversely, that estimates of parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists and theorists studying social evolution. We advocate the measurement of social selection and indirect genetic effects in natural populations to test the predictions from game theory and, in turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.
more »
« less
Stochasticity, Selection, and the Evolution of Cooperation in a Two-Level Moran Model of the Snowdrift Game
The Snowdrift Game, also known as the Hawk-Dove Game, is a social dilemma in which an individual can participate (cooperate) or not (defect) in producing a public good. It is relevant to a number of collective action problems in biology. In a population of individuals playing this game, traditional evolutionary models, in which the dynamics are continuous and deterministic, predict a stable, interior equilibrium frequency of cooperators. Here, we examine how finite population size and multilevel selection affect the evolution of cooperation in this game using a two-level Moran process, which involves discrete, stochastic dynamics. Our analysis has two main results. First, we find that multilevel selection in this model can yield significantly higher levels of cooperation than one finds in traditional models. Second, we identify a threshold effect for the payoff matrix in the Snowdrift Game, such that below (above) a determinate cost-to-benefit ratio, cooperation will almost surely fix (go extinct) in the population. This second result calls into question the explanatory reach of traditional continuous models and suggests a possible alternative explanation for high levels of cooperative behavior in nature.
more »
« less
- Award ID(s):
- 1855417
- PAR ID:
- 10344729
- Date Published:
- Journal Name:
- Complexity
- Volume:
- 2018
- ISSN:
- 1076-2787
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Many models of evolution are implicitly causal processes. Features such as causal feedback between evolutionary variables and evolutionary processes acting at multiple levels, though, mean that conventional causal models miss important phenomena. We develop here a general theoretical framework for analyzing evolutionary processes drawing on recent approaches to causal modeling developed in the machine-learning literature, which have extended Pearls do-calculus to incorporate cyclic causal interactions and multilevel causation. We also develop information-theoretic notions necessary to analyze causal information dynamics in our framework, introducing a causal generalization of the Partial Information Decomposition framework. We show how our causal framework helps to clarify conceptual issues in the contexts of complex trait analysis and cancer genetics, including assigning variation in an observed trait to genetic, epigenetic and environmental sources in the presence of epigenetic and environmental feedback processes, and variation in fitness to mutation processes in cancer using a multilevel causal model respectively, as well as relating causally-induced to observed variation in these variables via information theoretic bounds. In the process, we introduce a general class of multilevel causal evolutionary processes which connect evolutionary processes at multiple levels via coarse-graining relationships. Further, we show how a range of fitness models can be formulated in our framework, as well as a causal analog of Prices equation (generalizing the probabilistic Rice equation), clarifying the relationships between realized/probabilistic fitness and direct/indirect selection. Finally, we consider the potential relevance of our framework to foundational issues in biology and evolution, including supervenience, multilevel selection and individuality. Particularly, we argue that our class of multilevel causal evolutionary processes, in conjunction with a minimum description length principle, provides a conceptual framework in which identification of multiple levels of selection may be reduced to a model selection problem.more » « less
-
Multilevel network data provide two important benefits for ERG modeling. First, they facilitate estimation of the decay parameters in geometrically weighted terms for degree and triad distributions. Estimating decay parameters from a single network is challenging, so in practice they are typically fixed rather than estimated. Multilevel network data overcome that challenge by leveraging replication. Second, such data make it possible to assess out-ofsample performance using traditional cross-validation techniques. We demonstrate these benefits by using a multilevel network sample of classroom networks from Poland. We show that estimating the decay parameters improves in-sample performance of the model and that the out-of-sample performance of our best model is strong, suggesting that our findings can be generalized to the population of interest.more » « less
-
Abstract Population structure affects the outcome of natural selection. These effects can be modeled using evolutionary games on graphs. Recently, conditions were derived for a trait to be favored under weak selection, on any weighted graph, in terms of coalescence times of random walks. Here we consider isothermal graphs, which have the same total edge weight at each node. The conditions for success on isothermal graphs take a simple form, in which the effects of graph structure are captured in the ‘effective degree’—a measure of the effective number of neighbors per individual. For two update rules (death-Birth and birth-Death), cooperative behavior is favored on a large isothermal graph if the benefit-to-cost ratio exceeds the effective degree. For two other update rules (Birth-death and Death-birth), cooperation is never favored. We relate the effective degree of a graph to its spectral gap, thereby linking evolutionary dynamics to the theory of expander graphs. Surprisingly, we find graphs of infinite average degree that nonetheless provide strong support for cooperation.more » « less
-
Prosocial behavior is ubiquitous in nature despite the relative fitness costs carried by cooperative individuals. However, the stability of cooperation in populations is fragile and often maintained through enforcement. We propose that homologous recombination provides such a mechanism in bacteria. Using an agent-based model of recombination in bacteria playing a public goods game, we demonstrate how changes in recombination rates affect the proportion of cooperating cells. In our model, recombination converts cells to a different strategy, either freeloading (cheaters) or cooperation, based on the strategies of neighboring cells and recombination rate. Increasing the recombination rate expands the parameter space in which cooperators outcompete freeloaders. However, increasing the recombination rate alone is neither sufficient nor necessary. Intermediate benefits of cooperation, lower population viscosity, and greater population size can promote the evolution of cooperation from within populations of cheaters. Our findings demonstrate how recombination influences the persistence of cooperative behavior in bacteria.more » « less
An official website of the United States government

