Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g. sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the swimmer and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here, we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency, defined as a particular flow rate divided by the torque required to spin the motor, over this parameter space. Our findings indicate that motor efficiency (measured by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong shear thinning of the viscoelastic environment.
more »
« less
Ambient Fluid Rheology Modulates Oscillatory Instabilities in Filament-Motor Systems
Semi-flexible filaments interacting with molecular motors and immersed in rheologically complex and viscoelastic media constitute a common motif in biology. Synthetic mimics of filament-motor systems also feature active or field-activated filaments. A feature common to these active assemblies is the spontaneous emergence of stable oscillations as a collective dynamic response. In nature, the frequency of these emergent oscillations is seen to depend strongly on the viscoelastic characteristics of the ambient medium. Motivated by these observations, we study the instabilities and dynamics of a minimal filament-motor system immersed in model viscoelastic fluids. Using a combination of linear stability analysis and full non-linear numerical solutions, we identify steady states, test the linear stability of these states, derive analytical stability boundaries, and investigate emergent oscillatory solutions. We show that the interplay between motor activity, filament and motor elasticity, and fluid viscoelasticity allows for stable oscillations or limit cycles to bifurcate from steady states. When the ambient fluid is Newtonian, frequencies are controlled by motor kinetics at low viscosities, but decay monotonically with viscosity at high viscosities. In viscoelastic fluids that have the same viscosity as the Newtonian fluid, but additionally allow for elastic energy storage, emergent limit cycles are associated with higher frequencies. The increase in frequency depends on the competition between fluid relaxation time-scales and time-scales associated with motor binding and unbinding. Our results suggest that both the stability and oscillatory properties of active systems may be controlled by tailoring the rheological properties and relaxation times of ambient fluidic environments.
more »
« less
- PAR ID:
- 10344746
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 10
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The influence of parametric forcing on a viscoelastic fluid layer, in both gravitationally stable and unstable configurations, is investigated via linear stability analysis. When such a layer is vertically oscillated beyond a threshold amplitude, large interface deflections are caused by Faraday instability. Viscosity and elasticity affect the damping rate of momentary disturbances with arbitrary wavelength, thereby altering the threshold and temporal response of this instability. In gravitationally stable configurations, calculations show that increased elasticity can either stabilize or destabilize the viscoelastic system. In weakly elastic liquids, higher elasticity increases damping, raising the threshold for Faraday instability, whereas the opposite is observed in strongly elastic liquids. While oscillatory instability occurs in Newtonian fluids for all gravity levels, we find that parametric forcing below a critical frequency will cause a monotonic instability for viscoelastic systems at microgravity. Importantly, in gravitationally unstable configurations, parametric forcing above this frequency stabilizes viscoelastic fluids, until the occurrence of a second critical frequency. This result contrasts with the case of Newtonian liquids, where under the same conditions, forcing stabilizes a system for all frequencies below a single critical frequency. Analytical expressions are obtained under the assumption of long wavelength disturbances predicting the damping rate of momentary disturbances as well as the range of parameters that lead to a monotonic response under parametric forcing.more » « less
-
null (Ed.)Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical functions in biology. The mechanisms underlying this collective response and the essential ingredients for stable synchronization remain a mystery. Inspired by how these biological entities integrate elasticity with molecular motor activity to generate sustained oscillations, a number of synthetic active filament systems have been developed that mimic oscillations of these biological active filaments. Here, we describe the collective dynamics and stable spatiotemporal patterns that emerge in such biomimetic multi-filament arrays, under conditions where steric interactions may impact or dominate the collective dynamics. To focus on the role of steric interactions, we study the system using Brownian dynamics, without considering long-ranged hydrodynamic interactions. The simulations treat each filament as a connected chain of self-propelling colloids. We demonstrate that short-range steric inter-filament interactions and filament roughness are sufficient – even in the absence of inter-filament hydrodynamic interactions – to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. We first analyze the collective dynamics of two- and three-filament clusters and identify parameter ranges in which steric interactions lead to synchronized oscillations and strongly occluded states. Generalizing these results to large one-dimensional arrays, we find rich emergent behaviors, including traveling metachronal waves, and modulated wavetrains that are controlled by the interplay between the array geometry, filament activity, and filament elasticity. Interestingly, the existence of metachronal waves is non-monotonic with respect to the inter-filament spacing. We also find that the degree of filament roughness significantly affects the dynamics – specifically, filament roughness generates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Taken together, simulations suggest that short-ranged steric inter-filament interactions could combine with complementary hydrodynamic interactions to control the development and regulation of oscillatory collective patterns. Furthermore, roughness and steric interactions may be critical to the development of jammed spatially periodic states; a spatiotemporal feature not observed in purely hydrodynamically interacting systems.more » « less
-
Abstract Non-Newtonian fluid mechanics and computational rheology widely exploit elastic dumbbell models such as Oldroyd-B and FENE-P for a continuum description of viscoelastic fluid flows. However, these constitutive equations fail to accurately capture some characteristics of realistic polymers, such as the steady extension in simple shear and extensional flows, thus questioning the ability of continuum-level modeling to predict the hydrodynamic behavior of viscoelastic fluids in more complex flows. Here, we present seven elastic dumbbell models, which include different microstructurally inspired terms, i.e., (i) the finite polymer extensibility, (ii) the conformation-dependent friction coefficient, and (iii) the conformation-dependent non-affine deformation. We provide the expressions for the steady dumbbell extension in shear and extensional flows and the corresponding viscosities for various elastic dumbbell models incorporating different microscopic features. We show the necessity of including these microscopic features in a constitutive equation to reproduce the experimentally observed polymer extension in shear and extensional flows, highlighting their potential significance in accurately modeling viscoelastic channel flow with mixed kinematics.more » « less
-
The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In this work, we consider a poroelastic immersed boundary method in which a fluid permeates a porous, elastic structure of negligible volume fraction, and extend this method to include stress relaxation of the material. The porous viscoelastic method presented here is validated for a prescribed oscillatory shear and for an expansion driven by the motion at the boundary of a circular material by comparing numerical solutions to an analytical solution of the Maxwell model for viscoelasticity. Finally, an application of the modelling framework to cell biology is provided: passage of a cell through a microfluidic channel. We demonstrate that the rheology of the cell cytoplasm is important for capturing the transit time through a narrow channel in the presence of a pressure drop in the extracellular fluid.more » « less