skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Identification of all-against-all protein–protein interactions based on deep hash learning
Abstract Background Protein–protein interaction (PPI) is vital for life processes, disease treatment, and drug discovery. The computational prediction of PPI is relatively inexpensive and efficient when compared to traditional wet-lab experiments. Given a new protein, one may wish to find whether the protein has any PPI relationship with other existing proteins. Current computational PPI prediction methods usually compare the new protein to existing proteins one by one in a pairwise manner. This is time consuming. Results In this work, we propose a more efficient model, called deep hash learning protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary hash code based on deep features extracted from the protein sequences using deep learning techniques. This encoding scheme enables us to turn the PPI discrimination problem into a much simpler searching problem. The binary hash code for a protein sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, the string matching problem of comparing a protein sequence against a database with M proteins can be transformed into a much more simpler problem: to find a number inside a sorted array of length M . This pre-screening process narrows down the search to a much smaller set of candidate proteins for further confirmation. As a final step, DHL-PPI uses the Hamming distance to verify the final PPI relationship. Conclusions The experimental results confirmed that DHL-PPI is feasible and effective. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is shown to be superior or competitive when compared to the other state-of-the-art methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, the proposed DHL-PPI reduced the time complexity from $$O(M^2)$$ O ( M 2 ) to $$O(M\log M)$$ O ( M log M ) for performing an all-against-all PPI prediction for a database with M proteins. With the proposed approach, a protein database can be preprocessed and stored for later search using the proposed encoding scheme. This can provide a more efficient way to cope with the rapidly increasing volume of protein datasets.  more » « less
Award ID(s):
1816005
PAR ID:
10344853
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
23
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Transferring knowledge between species is challenging: different species contain distinct proteomes and cellular architectures, which cause their proteins to carry out different functions via different interaction networks. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between species. These approaches cannot produce accurate predictions for proteins without homologues of known function, as many functions require cellular context for meaningful prediction. To supply this context, network-based methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and have demonstrated promising results in function prediction. However, most of these methods are tied to a network for a single species, and many species lack biological networks. Results In this work, we integrate sequence and network information across multiple species by computing IsoRank similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multispecies meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our multispecies approach takes advantage of more training examples, and consequently leads to significant improvements in function prediction performance compared to two network-based methods, a deep learning sequence-based method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to demonstrate that our approach performs well even in cases where a species has no network information available: when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out organism with good performance. Availability and implementation The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The data, including sequences, PPI networks and GO annotations are available at https://string-db.org/. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Summary Computational methods to predict protein–protein interaction (PPI) typically segregate into sequence-based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global ‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms. Availability and implementation https://topsyturvy.csail.mit.edu. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. In the aftermath of COVID-19, screening for pathogens has never been a more relevant problem. However, computational screening for pathogens is challenging due to a variety of factors, including (i) the complexity and role of the host, (ii) virulence factor divergence and dynamics, and (iii) population and community-level dynamics. Considering a potential pathogen's molecular interactions, specifically individual proteins and protein interactions can help pinpoint a potential protein of a given microbe to cause disease. However, existing tools for pathogen screening rely on existing annotations (KEGG, GO, etc), making the assessment of novel and unannotated proteins more challenging. Here, we present an LLM-inspired approach that considers protein sequence and structure to predict protein virulence. We present a two-stage model incorporating evolutionary features captured from the DistilProtBert language model and protein structure in a graph convolutional network. Our model performs better than sequence alone for virulence function when high-quality structures are present, thus representing a path forward for virulence prediction of novel and unannotated proteins. 
    more » « less
  4. Abstract Background: In bioinformatics, network alignment algorithms have been applied to protein-protein interaction (PPI) networks to discover evolutionary conserved substructures at the system level. However, most previous methods aim to maximize the similarity of aligned proteins in pairwise networks, while concerning little about the feature of connectivity in these substructures, such as the protein complexes. Results: In this paper, we identify the problem of finding conserved protein complexes, which requires the aligned proteins in a PPI network to form a connected subnetwork. By taking the feature of connectivity into consideration, we propose ConnectedAlign, an efficient method to find conserved protein complexes from multiple PPI networks. The proposed method improves the coverage significantly without compromising of the consistency in the aligned results. In this way, the knowledge of protein complexes in well-studied species can be extended to that of poor-studied species. Conclusions: We conducted extensive experiments on real PPI networks of four species, including human, yeast, fruit fly and worm. The experimental results demonstrate dominant benefits of the proposed method in finding protein complexes across multiple species. 
    more » « less
  5. O-linked β-N-acetylglucosamine (O-GlcNAc) is a distinct monosaccharide modification of serine (S) or threonine (T) residues of nucleocytoplasmic and mitochondrial proteins. O-GlcNAc modification (i.e., O-GlcNAcylation) is involved in the regulation of diverse cellular processes, including transcription, epigenetic modifications, and cell signaling. Despite the great progress in experimentally mapping O-GlcNAc sites, there is an unmet need to develop robust prediction tools that can effectively locate the presence of O-GlcNAc sites in protein sequences of interest. In this work, we performed a comprehensive evaluation of a framework for prediction of protein O-GlcNAc sites using embeddings from pre-trained protein language models. In particular, we compared the performance of three protein sequence-based large protein language models (pLMs), Ankh, ESM-2, and ProtT5, for prediction of O-GlcNAc sites and also evaluated various ensemble strategies to integrate embeddings from these protein language models. Upon investigation, the decision-level fusion approach that integrates the decisions of the three embedding models, which we call LM-OGlcNAc-Site, outperformed the models trained on these individual language models as well as other fusion approaches and other existing predictors in almost all of the parameters evaluated. The precise prediction of O-GlcNAc sites will facilitate the probing of O-GlcNAc site-specific functions of proteins in physiology and diseases. Moreover, these findings also indicate the effectiveness of combined uses of multiple protein language models in post-translational modification prediction and open exciting avenues for further research and exploration in other protein downstream tasks. LM-OGlcNAc-Site’s web server and source code are publicly available to the community. 
    more » « less