skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Directional, Low-Energy Driven Thermal Actuating Bilayer Enabled by Coordinated Submolecular Switching
The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It’s inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.  more » « less
Award ID(s):
1900647 1309673 0741503
PAR ID:
10344868
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced science
ISSN:
2307-0536
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators. 
    more » « less
  2. Abstract The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low‐energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta‐1,5‐diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low‐energy thermal stimulation, coordinated submolecular‐level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low‐energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low‐grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low‐grade thermal energy harvesting. It also enables low‐energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators. 
    more » « less
  3. Neat, densely packed, and highly aligned carbon nanotube fibers (CNTFs) have appealing room-temperature axial thermal conductivity (k) and thermal diffusivity (α) for applications in lightweight heat spreading, flexible thermal connections, and thermoelectric active cooling. Although CNTFs are regularly produced from different input carbon nanotubes (CNTs), prior work has not quantified how the CNT molecular aspect ratio r (i.e., molecular length-to-diameter ratio) influences k and α in well-aligned, packed CNTFs. Here, we perform self-heated steady-state and three-omega thermal measurements at room temperature on CNTF suspended in vacuum. Our results show that k increases from 150 to 380W/mK for viscosity-averaged molecular aspect ratios increasing from r=960 to 5600 and nanotube diameters of ∼2 nm, which we attribute to the effects of thermal resistances between CNT bundles. CNTFs made with varying volume fraction ϕ of constituent high-r and low-r CNT have properties that fall within or below the typical macroscopic rule-of-mixtures bounds. The thermal diffusivity α scales with k, leading to a sample-averaged volumetric heat capacity of 1.5±0.3MJ/m3K. This work's findings that fibers made from longer CNT have larger k and α at room temperature motivate further investigation into thermal transport in solution-spun CNTF. 
    more » « less
  4. Carbon nanotubes (CNTs) are quasi-one dimensional nanostructures that display both high thermal conductivity for potential thermal management applications and intriguing low-dimensional phonon transport phenomena. In comparison to the advances made in the theoretical calculation of the lattice thermal conductivity of CNTs, thermal transport measurements of CNTs have been limited by either the poor temperature sensitivity of Raman thermometry technique or the presence of contact thermal resistance errors in sensitive two-probe resistance thermometry measurements. Here we report advances in a multi-probe measurement of the intrinsic thermal conductivity of individual multi-walled CNT samples that are transferred from the growth substrate onto the measurement device. The sample-thermometer thermal interface resistance is directly measured by this multi-probe method and used to model the temperature distribution along the contacted sample segment. The detailed temperature profile helps to eliminate the contact thermal resistance error in the obtained thermal conductivity of the suspended sample segment. A differential electro-thermal bridge measurement method is established to enhance the signal-to-noise ratio and reduce the measurement uncertainty by over 40%. The obtained thermal resistances of multiple suspended segments of the same MWCNT samples increase nearly linearly with increasing length, revealing diffusive phonon transport as a result of phonon-defect scattering in these MWCNT samples. The measured thermal conductivity increases with temperature and reaches up to 390 ± 20 W m-1 K-1 at room temperature for a 9-walled MWCNT. Theoretical analysis of the measurement results suggests submicron phonon mean free paths due to extrinsic phonon scattering by extended defects such as grain boundaries. The obtained thermal conductivity is decreased by a factor of 3 upon electron beam damage and surface contamination of the CNT sample. 
    more » « less
  5. Abstract Polymers with reversible elongation upon cooling (EUC) and contraction upon heating (CUH) enabled applications in actuators, fasteners, dampers, grippers, swimmers, sealants, etc. With the current working temperature being limited to mainly above zero Celsius, applications for subzero Celsius environments are obstructed. In addition, current reversible actuation needs a constant tensile load, or for the best case, under zero tensile load. Reversible EUC and CUH under compressive load is almost impossible and has not been explored. In this work, acispoly(1,4-butadiene) based system has been developed. Actuated below zero Celsius, 69% EUC occurred under a tensile load; and 6.2% EUC and 17.9% CUH occurred under 0.05 MPa compressive load. The reversible actuation was driven by both entropy and enthalpy, which was validated by a series of characterization tools. 
    more » « less