skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Optimization-Based Meta-Learning Model for MRI Reconstruction with Diverse Dataset
This work aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the meta-learning framework. Specifically, we develop a deep reconstruction network induced by a learnable optimization algorithm (LOA) to solve the nonconvex nonsmooth variational model of MRI image reconstruction. In this model, the nonconvex nonsmooth regularization term is parameterized as a structured deep network where the network parameters can be learned from data. We partition these network parameters into two parts: a task-invariant part for the common feature encoder component of the regularization, and a task-specific part to account for the variations in the heterogeneous training and testing data. We train the regularization parameters in a bilevel optimization framework which significantly improves the robustness of the training process and the generalization ability of the network. We conduct a series of numerical experiments using heterogeneous MRI data sets with various undersampling patterns, ratios, and acquisition settings. The experimental results show that our network yields greatly improved reconstruction quality over existing methods and can generalize well to new reconstruction problems whose undersampling patterns/trajectories are not present during training.  more » « less
Award ID(s):
1925263 1818886
PAR ID:
10344946
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Imaging
Volume:
7
Issue:
11
ISSN:
2313-433X
Page Range / eLocation ID:
231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self‐supervised learning strategy that more efficiently uses the acquired data to train a physics‐guided reconstruction network without a database of fully sampled data. The proposed multi‐mask self‐supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi‐mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG‐SENSE, and single‐mask SSDU DL‐MRI, as well as supervised DL‐MRI when fully sampled data are available. The results on knee MRI show that the proposed multi‐mask SSDU outperforms SSDU and performs as well as supervised DL‐MRI. A clinical reader study further ranks the multi‐mask SSDU higher than supervised DL‐MRI in terms of signal‐to‐noise ratio and aliasing artifacts. Results on brain MRI show that multi‐mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi‐mask SSDU at R = 8 significantly improves reconstruction compared with single‐mask SSDU at R = 8, as well as CG‐SENSE at R = 2. 
    more » « less
  2. PurposeTo develop a strategy for training a physics‐guided MRI reconstruction neural network without a database of fully sampled data sets. MethodsSelf‐supervised learning via data undersampling (SSDU) for physics‐guided deep learning reconstruction partitions available measurements into two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network and the other is used to define the loss for training. The proposed training without fully sampled data is compared with fully supervised training with ground‐truth data, as well as conventional compressed‐sensing and parallel imaging methods using the publicly available fastMRI knee database. The same physics‐guided neural network is used for both proposed SSDU and supervised training. The SSDU training is also applied to prospectively two‐fold accelerated high‐resolution brain data sets at different acceleration rates, and compared with parallel imaging. ResultsResults on five different knee sequences at an acceleration rate of 4 shows that the proposed self‐supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed‐sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study. The results on prospectively subsampled brain data sets, in which supervised learning cannot be used due to lack of ground‐truth reference, show that the proposed self‐supervised approach successfully performs reconstruction at high acceleration rates (4, 6, and 8). Image readings indicate improved visual reconstruction quality with the proposed approach compared with parallel imaging at acquisition acceleration. ConclusionThe proposed SSDU approach allows training of physics‐guided deep learning MRI reconstruction without fully sampled data, while achieving comparable results with supervised deep learning MRI trained on fully sampled data. 
    more » « less
  3. Image reconstruction is the process of recovering an image from raw, under-sampled signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruction using a limited number of measurements, but these methods typically rely on the existence of a large, centralized database of fully sampled scans for training. In this work, we investigate federated learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of training global models across multiple clients (data sites), while keeping individual scans local. We empirically identify a low-data regime across a large number of heterogeneous scans, where a small number of training samples per client are available and non-collaborative models lead to performance drops. In this regime, we investigate the performance of adaptive federated optimization algorithms as a function of client data distribution and communication budget. Experimental results show that adaptive optimization algorithms are well suited for the federated learning of unrolled models, even in a limited-data regime (50 slices per data site), and that client-sided personalization can improve reconstruction quality for clients that did not participate in training. 
    more » « less
  4. Implicit Neural Representations (INRs) are a learning-based approach to accelerate Magnetic Resonance Imaging (MRI) acquisitions, particularly in scan-specific settings when only data from the under-sampled scan itself are available. Previous work has shown that INRs improve rapid MRI through inherent regularization imposed by neural network architectures. Typically parameterized by fully connected neural networks, INRs provide continuous image representations by mapping a physical coordinate location to its intensity. Prior approaches have applied unlearned regularization priors during INR training and were limited to 2D or low-resolution 3D acquisitions. Meanwhile, diffusion-based generative models have recently gained attention for learning powerful image priors independent of the measurement model. This work proposes INFusion, a technique that regularizes INR optimization from under-sampled MR measurements using pre-trained diffusion models to enhance reconstruction quality. In addition, a hybrid 3D approach is introduced, enabling INR application on large-scale 3D MR datasets. Experimental results show that in 2D settings, diffusion regularization improves INR training, while in 3D, it enables feasible INR training on matrix sizes of 256 × 256 × 80. 
    more » « less
  5. Abstract Deep learning requires solving a nonconvex optimization problem of a large size to learn a deep neural network (DNN). The current deep learning model is of asingle-grade, that is, it trains a DNN end-to-end, by solving a single nonconvex optimization problem. When the layer number of the neural network is large, it is computationally challenging to carry out such a task efficiently. The complexity of the task comes from learning all weight matrices and bias vectors from one single nonconvex optimization problem of a large size. Inspired by the human education process which arranges learning in grades, we propose a multi-grade learning model: instead of solving one single optimization problem of a large size, we successively solve a number of optimization problems of small sizes, which are organized in grades, to learn a shallow neural network (a network having a few hidden layers) for each grade. Specifically, the current grade is to learn the leftover from the previous grade. In each of the grades, we learn a shallow neural network stacked on the top of the neural network, learned in the previous grades, whose parameters remain unchanged in training of the current and future grades. By dividing the task of learning a DDN into learning several shallow neural networks, one can alleviate the severity of the nonconvexity of the original optimization problem of a large size. When all grades of the learning are completed, the final neural network learned is astair-shapeneural network, which is thesuperpositionof networks learned from all grades. Such a model enables us to learn a DDN much more effectively and efficiently. Moreover, multi-grade learning naturally leads to adaptive learning. We prove that in the context of function approximation if the neural network generated by a new grade is nontrivial, the optimal error of a new grade is strictly reduced from the optimal error of the previous grade. Furthermore, we provide numerical examples which confirm that the proposed multi-grade model outperforms significantly the standard single-grade model and is much more robust to noise than the single-grade model. They include three proof-of-concept examples, classification on two benchmark data sets MNIST and Fashion MNIST with two noise rates, which is to find classifiers, functions of 784 dimensions, and as well as numerical solutions of the one-dimensional Helmholtz equation. 
    more » « less