skip to main content


Title: Photoluminescence of Cis-Polyacetylene Semiconductor Material
Photoluminescence (PL) is one of the key experimental characterizations of optoelectronic materials, including conjugated polymers (CPs). In this study, a simplified model of an undoped cis-polyacetylene (cis-PA) oligomer was selected and used to explain the mechanism of photoluminescence (PL) of the CPs. Using a combination of the ab initio electronic structure and a time-dependent density matrix methodology, the photo-induced time-dependent excited state dynamics were computed. We explored the phonon-induced relaxation of the photoexcited state for a single oligomer of cis-PA. Here, the dissipative Redfield equation of the motion was used to compute the dissipative excited state dynamics of electronic degrees of freedom. This equation used the nonadiabatic couplings as parameters. The computed excited state dynamics showed that the relaxation rate of the electron is faster than the relaxation rate of the hole. The dissipative excited-state dynamics were combined with radiative recombination channels to predict the PL spectrum. The simulated results showed that the absorption and emission spectra both have a similar transition. The main result is that the computed PL spectrum demonstrates two mechanisms of light emission originating from (i) the inter-band transitions, corresponding to the same range of transition energies as the absorption spectrum and (ii) intra-band transitions not available in the absorption spectra. However, the dissipative Redfield equation of the motion was used to compute the electronic degrees of freedom of the nonadiabatic couplings, which helped to process the time propagation of the excited dynamic state. This excited dynamic state shows that the relaxation rate of the electron is faster than the relaxation rate of the hole, which can be used for improving organic semiconductor materials for photovoltaic and LED applications.  more » « less
Award ID(s):
1944921
NSF-PAR ID:
10344970
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
6
ISSN:
2076-3417
Page Range / eLocation ID:
2830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active ( E )-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2 , is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm −1 . Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 . We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces. 
    more » « less
  2. Energy transfer in organic materials is extensively studied due to many applications in optoelectronics. The electronic and vibrational relaxations within molecular assemblies can be influenced by stacking arrangements or additions of a backbone that unites them. Here, we present the computational study of the photoexcitation dynamics of a perylene diimide monomer, and face-to-face stacked dimer and trimer. By using non-adiabatic excited-state molecular dynamics simulations, we show that the non-radiative relaxation is accelerated with the number of stacked molecules. This effect is explained by differences in the energy splitting between states that impacts their corresponding nonadiabatic couplings. Additionally, our analysis of the vibronic dynamics reveals that the passage through the different conical intersections that participate in the relaxation of the stacked systems, activate a positive feedback mechanism. This effect involves a narrow set of vibrational normal modes that accelerate the process by increasing the efficiency of its vibronic dynamics. In contrast, an addition of a biologically inspired backbone slows down the relaxation rate due to its participation in the vibronic dynamics of the molecular stacking arrangements. Our results suggest the stacking arrangements and common backbones as strategies to modulate the efficiency of electronic and vibrational relaxation of diimide-based systems and other molecular aggregates. 
    more » « less
  3. Abstract

    Here, the observation of spin‐polarized emission for the Au25(SC8H9)18monolayer‐protected cluster (MPC) is reported. Variable‐temperature variable‐field magnetic circular photoluminescence (VTV‐MCPL) measurements are combined with VT‐PL spectroscopy to provide state‐resolved characterization of the transient electronic structure and spin‐polarized electron‐hole recombination dynamics of Au25(SC8H9)18. Through analysis of VTV‐MCPL measurements, a low energy (1.64 eV) emission peak is assigned to intraband relaxation between core‐metal‐localized superatom‐D to ‐P orbitals. Two higher energy interband components (1.78 eV, 1.94 eV) are assigned to relaxation from superatom‐D orbitals to states localized to the inorganic semirings. For both intraband superatom‐based or interband relaxation mechanisms, the extent of spin‐polarization, quantified as the degree of circular polarization (DOCP), is determined by state‐specific electron‐vibration coupling strengths and energy separations of bright and dark electronic fine‐structure levels. At low temperatures (<60 K), metal–metal superatom‐based intraband transitions dominate the global PL emission. At higher temperatures (>60 K), interband ligand‐based emission is dominant. In the low‐temperature PL regime, increased sample temperature results in larger global PL intensity. In the high‐temperature regime, increased temperature quenches interband radiative recombination. The relative intensity for each PL mechanism is discussed in terms of state‐specific electronic‐vibrational coupling strengths and related to the total angular momentum, quantified by Landég‐factors.

     
    more » « less
  4. Photoexcitation of multichromophoric light harvesting molecules induces a number of intramolecular electronic energy relaxation and redistribution pathways that can ultimately lead to ultrafast exciton self-trapping on a single chromophore unit. We investigate the photoinduced processes that take place on a phenylene-ethynylene dendrimer, consisting of nine equivalent linear chromophore units or branches. meta -Substituted links between branches break the conjugation giving rise to weak couplings between them and to localized excitations. Our nonadiabatic excited-state molecular dynamics simulations reveal that the ultrafast internal conversion process to the lowest excited state is accompanied by an inner → outer inter-branch migration of the exciton due to the entropic bias associated with energetically equivalent conjugated segments. The electronic energy redistribution among chromophore units occurs through several possible pathways in which through-bond transport and through-space exciton hopping mechanisms can be distinguished. Besides, triple bond excitations coincide with the localization of the electronic transition densities, suggesting that the intramolecular energy redistribution is a concerted electronic and vibrational energy transfer process. 
    more » « less
  5. Abstract

    The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm−1coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.

     
    more » « less