Semiconducting conjugated polymers (CPs) are pivotal in advancing organic electronics, offering tunable properties for solar cells and field-effect transistors. Here, we carry out first-principle calculations to study individual cis-polyacetylene (cis-PA) oligomers and their ensembles. The ground electronic structures are obtained using density functional theory (DFT), and excited state dynamics are explored by computing nonadiabatic couplings (NACs) between electronic and nuclear degrees of freedom. We compute the nonradiative relaxation of charge carriers and photoluminescence (PL) using the Redfield theory. Our findings show that electrons relax faster than holes. The ensemble of oligomers shows faster relaxation compared to the single oligomer. The calculated PL spectra show features from both interband and intraband transitions. The ensemble shows broader line widths, redshift of transition energies, and lower intensities compared to the single oligomer. This comparative study suggests that the dispersion forces and orbital hybridizations between chains are the leading contributors to the variation in PL. It provides insights into the fundamental behaviors of CPs and the molecular-level understanding for the design of more efficient optoelectronic devices.
more »
« less
Photoluminescence of Cis-Polyacetylene Semiconductor Material
Photoluminescence (PL) is one of the key experimental characterizations of optoelectronic materials, including conjugated polymers (CPs). In this study, a simplified model of an undoped cis-polyacetylene (cis-PA) oligomer was selected and used to explain the mechanism of photoluminescence (PL) of the CPs. Using a combination of the ab initio electronic structure and a time-dependent density matrix methodology, the photo-induced time-dependent excited state dynamics were computed. We explored the phonon-induced relaxation of the photoexcited state for a single oligomer of cis-PA. Here, the dissipative Redfield equation of the motion was used to compute the dissipative excited state dynamics of electronic degrees of freedom. This equation used the nonadiabatic couplings as parameters. The computed excited state dynamics showed that the relaxation rate of the electron is faster than the relaxation rate of the hole. The dissipative excited-state dynamics were combined with radiative recombination channels to predict the PL spectrum. The simulated results showed that the absorption and emission spectra both have a similar transition. The main result is that the computed PL spectrum demonstrates two mechanisms of light emission originating from (i) the inter-band transitions, corresponding to the same range of transition energies as the absorption spectrum and (ii) intra-band transitions not available in the absorption spectra. However, the dissipative Redfield equation of the motion was used to compute the electronic degrees of freedom of the nonadiabatic couplings, which helped to process the time propagation of the excited dynamic state. This excited dynamic state shows that the relaxation rate of the electron is faster than the relaxation rate of the hole, which can be used for improving organic semiconductor materials for photovoltaic and LED applications.
more »
« less
- Award ID(s):
- 1944921
- PAR ID:
- 10344970
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 12
- Issue:
- 6
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 2830
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-dimensional organic–inorganic hybrid lead halide perovskites are of interest for photovoltaic and light emitting devices due to their favorable properties that can be tuned. Here we use density functional theory to model two-dimensional lead halide perovskites of different thicknesses and using two different hallogens. Excited-state optoelectronic properties of the perovskite models are examined using excited-state dynamics treated by reduced density matrix method. Nonadiabatic couplings were computed based on the on-the-fly approach along a molecular dynamics trajectory at ambient temperatures. The density matrix-based equation of motion for electronic degrees of freedom was used to determine the dynamics of electronic degrees of freedom. We observe that the thickness of the perovskite layer shows a redshift in the absorption spectra with increasing thickness but has minimal effect on the photoluminescence quantum yield of the material.more » « less
-
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active ( E )-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2 , is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm −1 . Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 . We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.more » « less
-
The efficiency of silicon solar cells is affected by the light absorption and recombination losses of photoexcited charge carries. One possible way to improve the efficiency is through the deposition of transition metal nanoparticles on Si surfaces. Here, we first carry out density functional theory (DFT) calculations to obtain electronic structures for Agn (n = 1–7) monolayered clusters adsorbed on Si(111)/H surfaces. Results are presented in the form of the density of states, band gaps, and light absorption, which allow for the investigation of the interaction of Ag clusters with Si. Different behaviors can be expected depending on the size of the deposited Ag clusters. Overall, the deposition of Ag clusters leads to smaller band gaps, red-shifts, and large increases in light absorption compared to the pristine Si slab. We then study the relaxation dynamics of electron–hole pairs for slabs based on nonadiabatic couplings using the reduced density matrix approach within the Redfield formalism. Nonradiative relaxation rates are noticeably different for various structures and transitions. One observes higher relaxation rates for surfaces with adsorbates than for the pristine Si surface due to charge transfer events involving Ag orbitals. We also compute emission spectra from excited-state relaxation dynamics. The band gap emission is dark for the pristine Si due to the indirect nature of its band gap. The addition of larger Ag clusters breaks the symmetry of Si slabs, enabling indirect gap transitions. These slabs thus exhibit bright band gap emission. The introduction of adsorbates is advantageous for applications in photovoltaics and photocatalysis.more » « less
-
Ultrafast X-ray/XUV transient absorption spectroscopy is a powerful tool for real-time probing of chemical dynamics. Interpretation of the transient absorption spectra requires knowledge of core-excited potentials, which necessitates assistance from high-level electronic-structure computations. In this study, we investigate Br-3d core-excited electronic structures of hydrogen bromide (HBr) using spin-orbit general multiconfigurational quasidegenerate perturbation theory (SO-GMC-QDPT). Potential energy curves and transition dipole moments are calculated from the Franck-Condon region to the asymptotic limit and used to construct core-to-valence absorption strengths for five electronic states of HBr (Σ10+, 3Π1, 1Π1, 3Π0+, 3Σ1) and two electronic states of HBr+ (2Π3∕2, 2Σ1∕2). The results illustrate the capabilities of Br-3d edge probing to capture transitions of the electronic-state symmetry as well as nonadiabatic dissociation processes that evolve across avoided crossings. Furthermore, core-to-valence absorption spectra are simulated from the neutral Σ10+ state and the ionic Π21/2,3/2 states by numerically solving the time-dependent Schrödinger equation and exhibit excellent agreement with the experimental spectrum. The comprehensive and quantitative picture of the core-excited states obtained in this work allows for transparent analysis of the core-to-valence absorption signals, filling gaps in the theoretical understanding of the Br-3d transient absorption spectra.more » « less
An official website of the United States government

