skip to main content


Title: Spell Once, Summon Anywhere: A Two-Level Open-Vocabulary Language Model
We show how the spellings of known words can help us deal with unknown words in open-vocabulary NLP tasks. The method we propose can be used to extend any closedvocabulary generative model, but in this paper we specifically consider the case of neural language modeling. Our Bayesian generative story combines a standard RNN language model (generating the word tokens in each sentence) with an RNNbased spelling model (generating the letters in each word type). These two RNNs respectively capture sentence structure and word structure, and are kept separate as in linguistics. By invoking the second RNN to generate spellings for novel words in context, we obtain an open-vocabulary language model. For known words, embeddings are naturally inferred by combining evidence from type spelling and token context. Comparing to baselines (including a novel strong baseline), we beat previous work and establish state-of-the-art results on multiple datasets.  more » « less
Award ID(s):
1718846
NSF-PAR ID:
10345020
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
6843 to 6850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider neural language generation under a novel problem setting: generating the words of a sentence according to the order of their first appearance in its lexicalized PCFG parse tree, in a depth-first, left-to-right manner. Unlike previous tree-based language generation methods, our approach is both (i) topdown and (ii) explicitly generating syntactic structure at the same time. In addition, our method combines neural model with symbolic approach: word choice at each step is constrained by its predicted syntactic function. We applied our model to the task of dialog response generation, and found it significantly improves over sequence-to-sequence baseline, in terms of diversity and relevance. We also investigated the effect of lexicalization on language generation, and found that lexicalization schemes that give priority to content words have certain advantages over those focusing on dependency relations. 
    more » « less
  2. null (Ed.)
    Current multilingual vision-language models either require a large number of additional parameters for each supported language, or suffer performance degradation as languages are added. In this paper, we-9*6 propose a Scalable Multilingual Aligned Language Representation (SMALR) that supports many languages with few model parameters without sacrificing downstream task performance. SMALR learns a fixed size language-agnostic representation for most words in a multilingual vocabulary, keeping language-specific features for just a few. We use a masked cross-language modeling loss to align features with context from other languages. Additionally, we propose a cross-lingual consistency module that ensures predictions made for a query and its machine translation are comparable. The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date. We evaluate on multilingual image-sentence retrieval and outperform prior work by 3–4% with less than 1/5th the training parameters compared to other word embedding methods. 
    more » « less
  3. null (Ed.)
    Current multilingual vision-language models either require a large number of additional parameters for each supported language, or suffer performance degradation as languages are added. In this paper, we-9*6 propose a Scalable Multilingual Aligned Language Representation (SMALR) that supports many languages with few model parameters without sacrificing downstream task performance. SMALR learns a fixed size language-agnostic representation for most words in a multilingual vocabulary, keeping language-specific features for just a few. We use a masked cross-language modeling loss to align features with context from other languages. Additionally, we propose a cross-lingual consistency module that ensures predictions made for a query and its machine translation are comparable. The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date. We evaluate on multilingual image-sentence retrieval and outperform prior work by 3–4% with less than 1/5th the training parameters compared to other word embedding methods. 
    more » « less
  4. null (Ed.)
    Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods. 
    more » « less
  5. The ability to connect language units to their referents in the physical world, referred to as grounding, is crucial to learning and understanding grounded meanings of words. While humans demonstrate fast mapping in new word learning, it remains unclear whether modern vision-language models can truly represent language with their grounded meanings, and how grounding may further bootstrap new word learning. To this end, we introduce Grounded Open Vocabulary Acquisition (GOVA) to examine grounding and bootstrapping in open-world language learning. As an initial attempt, we propose object-oriented BERT (OctoBERT), a novel visually-grounded language model by pre-training on image-text pairs highlighting grounding as an objective. Through extensive experiments and analysis, we demonstrate that OctoBERT is a more coherent and fast grounded word learner, and that the grounding ability acquired during pre-training helps the model to learn unseen words more rapidly and robustly. 
    more » « less