null
                            (Ed.)
                        
                    
            
                            Current multilingual vision-language models either require a large number of additional parameters for each supported language, or suffer performance degradation as languages are added. In this paper, we-9*6 propose a Scalable Multilingual Aligned Language Representation (SMALR) that supports many languages with few model parameters without sacrificing downstream task performance. SMALR learns a fixed size language-agnostic representation for most words in a multilingual vocabulary, keeping language-specific features for just a few. We use a masked cross-language modeling loss to align features with context from other languages. Additionally, we propose a cross-lingual consistency module that ensures predictions made for a query and its machine translation are comparable. The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date. We evaluate on multilingual image-sentence retrieval and outperform prior work by 3–4% with less than 1/5th the training parameters compared to other word embedding methods. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    