Abstract Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm’s law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.
more »
« less
The relation between the energy conversion rate and reconnection rate in Petschek-type reconnection—Implications for solar flares
- Award ID(s):
- 1902867
- PAR ID:
- 10345054
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 28
- Issue:
- 8
- ISSN:
- 1070-664X
- Page Range / eLocation ID:
- 082103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic reconnection is regarded as the mechanism for the rapid release of magnetic energy stored in active regions during solar flares, and quantitative measurements of the magnetic reconnection rate are essential for understanding solar flares. In the context of the standard two-ribbon flare model, we derive the coronal magnetic reconnection rate of the M6.5 flare on 2015 June 22 in two terms, reconnection flux change rate and reconnection electric field, both of which can be obtained from observations of the flare morphology. Data used include a sequence of chromospheric Hαimages with unprecedented resolution during the flare from the Visual Imaging Spectrometer of the Goode Solar Telescope (GST) at the Big Bear Solar Observatory and a preflare line-of-sight photospheric magnetogram from the GST Near-InfraRed Imaging Spectropolarimeter along with hard X-ray data from the Ramaty High Energy Solar Spectroscopic Imager. The temporal correlation between the magnetic reconnection rate and nonthermal emission is found, and the variation of the reconnection electric field is mainly determined by the ribbon speed, not by the local magnetic field encountered by the ribbon front. Spatially, the hard X-ray source overlaps with the location of the strongest electric field obtained at the same time. The ribbon motion shows abundant fine structures, including a local acceleration at the location of a light bridge with a weaker magnetic field.more » « less
-
Abstract The role a geospace plume in influencing the efficiency of magnetopause reconnection is an open question with two contrasting theories being debated. A local‐control theory suggests that a plume decreases both local and global reconnection rates, whereas a global‐control theory argues that the global reconnection rate is controlled by the solar wind rather than local physics. Observationally, limited numbers of point measurements from spacecraft cannot reveal whether a local change affects the global reconnection. A distributed observatory is hence needed to assess the validity of the two theories. We use THEMIS and Los Alamos National Laboratory spacecraft to identify the occurrence of a geospace plume and its contact with the magnetopause. Global evolution and morphology of the plume is traced using GPS measurements. SuperDARN is then used to monitor the distribution and the strength of dayside reconnection. Two storm‐time geospace plume events are examined and show that as the plume contacts the magnetopause, the efficiency of reconnection decreases at the contact longitude. The amount of local decrease is 81% and 68% for the two events, and both values are consistent with the mass loading effect of the plume if the plume's atomic mass is ∼4 amu. Reconnection in the surrounding is enhanced, and when the solar wind driving is stable, little variation is seen in the cross polar cap potential. This study illuminates a pathway to resolve the role of cold dense plasma on solar wind‐magnetosphere coupling, and the observations suggest that plumes redistribute magnetopause reconnection activity without changing the global strength substantially.more » « less