skip to main content


Search for: All records

Award ID contains: 1902867

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The rate of magnetic reconnection is of the utmost importance in a variety of processes because it controls, for example, the rate energy is released in solar flares, the speed of the Dungey convection cycle in Earth’s magnetosphere, and the energy release rate in harmful geomagnetic substorms. It is known from numerical simulations and satellite observations that the rate is approximately 0.1 in normalized units, but despite years of effort, a full theoretical prediction has not been obtained. Here, we present a first-principles theory for the reconnection rate in non-relativistic electron-ion collisionless plasmas, and show that the same prediction explains why Sweet-Parker reconnection is considerably slower. The key consideration of this analysis is the pressure at the reconnection site (i.e., the x-line). We show that the Hall electromagnetic fields in antiparallel reconnection cause an energy void, equivalently a pressure depletion, at the x-line, so the reconnection exhaust opens out, enabling the fast rate of 0.1. If the energy can reach the x-line to replenish the pressure, the exhaust does not open out. In addition to heliospheric applications, these results are expected to impact reconnection studies in planetary magnetospheres, magnetically confined fusion devices, and astrophysical plasmas.

     
    more » « less
  2. At the Earth’s low-latitude magnetopause, the Kelvin-Helmholtz (KH) waves, which are driven by the super-Alfvénic velocity shear across the magnetopause, have been frequently observed during periods of northward interplanetary-magnetic-field (IMF) and believed to contribute to efficiently transporting the solar wind plasmas into the magnetosphere. On the other hand, during southward IMF periods, the signatures of the KH waves are much less frequently observed and how the KH waves contribute to the solar wind transport has not been well explored. Recently, the Magnetospheric Multiscale (MMS) mission successfully detected signatures of the KH waves near the dusk-flank of the magnetopause during southward IMF. In this study, we analyzed a series of two- and three-dimensional fully kinetic simulations modeling this MMS event. The results show that a turbulent evolution of the lower-hybrid drift instability (LHDI) near the low-density (magnetospheric) side of the edge layer of the KH waves rapidly disturbs the structure of the layer and causes an effective transport of plasmas across the layer. The obtained transport rate is comparable to or even larger than that predicted for the northward IMF. These results indicate that the diffusive solar wind transport induced by the KH waves may be active at the flank-to-tail magnetopause during southward IMF. 
    more » « less