skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Cybersickness Prediction from Integrated HMD’s Sensors: A Multimodal Deep Fusion Approach using Eye-tracking and Head-tracking Data
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
Page Range / eLocation ID:
31 to 40
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Glacier velocity measurements are essential to understand ice flow mechanics, monitor natural hazards, and make accurate projections of future sea-level rise. Despite these important applications, the method most commonly used to derive glacier velocity maps, feature tracking, relies on empirical parameter choices that rarely account for glacier physics or uncertainty. Here we test two statistics- and physics-based metrics to evaluate velocity maps derived from optical satellite images of Kaskawulsh Glacier, Yukon, Canada, using a range of existing feature-tracking workflows. Based on inter-comparisons with ground truth data, velocity maps with metrics falling within our recommended ranges contain fewer erroneous measurements and more spatially correlated noise than velocity maps with metrics that deviate from those ranges. Thus, these metric ranges are suitable for refining feature-tracking workflows and evaluating the resulting velocity products. We have released an open-source software package for computing and visualizing these metrics, the GLAcier Feature Tracking testkit (GLAFT). 
    more » « less
  2. Recent progresses in model-free single object tracking (SOT) algorithms have largely inspired applying SOT to multi-object tracking (MOT) to improve the robustness as well as relieving dependency on external detector. However, SOT algorithms are generally designed for distinguishing a target from its environment, and hence meet problems when a target is spatially mixed with similar objects as observed frequently in MOT. To address this issue, in this paper we propose an instance-aware tracker to integrate SOT techniques for MOT by encoding awareness both within and between target models. In particular, we construct each target model by fusing information for distinguishing target both from background and other instances (tracking targets). To conserve uniqueness of all target models, our instance-aware tracker considers response maps from all target models and assigns spatial locations exclusively to optimize the overall accuracy. Another contribution we make is a dynamic model refreshing strategy learned by a convolutional neural network. This strategy helps to eliminate initialization noise as well as to adapt to the variation of target size and appearance. To show the effectiveness of the proposed approach, it is evaluated on the popular MOT15 and MOT16 challenge benchmarks. On both benchmarks, our approach achieves the best overall performances in comparison with published results. 
    more » « less
  3. Abstract This paper is concerned with solving, from the learning-based decomposition control viewpoint, the problem of output tracking with nonperiodic tracking–transition switching. Such a nontraditional tracking problem occurs in applications where sessions for tracking a given desired trajectory are alternated with those for transiting the output with given boundary conditions. It is challenging to achieve precision tracking while maintaining smooth tracking–transition switching, as postswitching oscillations can be induced due to the mismatch of the boundary states at the switching instants, and the tracking performance can be limited by the nonminimum-phase (NMP) zeros of the system and effected by factors such as input constraints and external disturbances. Although recently an approach by combining the system-inversion with optimization techniques has been proposed to tackle these challenges, modeling of the system dynamics and complicated online computation are needed, and the controller obtained can be sensitive to model uncertainties. In this work, a learning-based decomposition control technique is developed to overcome these limitations. A dictionary of input–output bases is constructed offline a priori via data-driven iterative learning first. The input–output bases are used online to decompose the desired output in the tracking sessions and design an optimal desired transition trajectory with minimal transition time under input-amplitude constraint. Finally, the control input is synthesized based on the superpositioning principle and further optimized online to account for system variations and external disturbance. The proposed approach is illustrated through a nanopositioning control experiment on a piezoelectric actuator. 
    more » « less