skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise
Abstract The amplification of coastal hazards such as distant-source tsunamis under future relative sea-level rise (RSLR) is poorly constrained. In southern California, the Alaska-Aleutian subduction zone has been identified as an earthquake source region of particular concern for a worst-case scenario distant-source tsunami. Here, we explore how RSLR over the next century will influence future maximum nearshore tsunami heights (MNTH) at the Ports of Los Angeles and Long Beach. Earthquake and tsunami modeling combined with local probabilistic RSLR projections show the increased potential for more frequent, relatively low magnitude earthquakes to produce distant-source tsunamis that exceed historically observed MNTH. By 2100, under RSLR projections for a high-emissions representative concentration pathway (RCP8.5), the earthquake magnitude required to produce >1 m MNTH falls from ~M w 9.1 (required today) to M w 8.0, a magnitude that is ~6.7 times more frequent along the Alaska-Aleutian subduction zone.  more » « less
Award ID(s):
1663807
PAR ID:
10345255
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the 1970s, the Shumagin Islands region of the Alaska subduction zone was identified as a seismic gap expected to host a future great [moment magnitude ( M w ) ≥8.0] earthquake. More recent geodetic data indicate that this region is weakly coupled, and the geologic record shows little evidence of past large events. From July to October 2020, a series of earthquakes occurred in this region, raising the possibility of greater coupling. The initial M w 7.8 thrust faulting earthquake straddled the eastern edge of the Shumagin Gap and was followed by an M w 7.6 strike-slip earthquake within the Shumagin Gap. Stress modeling indicates that this strike-slip earthquake is in fact favored if the Shumagin Gap has low coupling, whereas a highly coupled Shumagin Gap inhibits that type and location of earthquake. The initial thrust earthquake and its afterslip enhanced the strike-slip loading within the subducting slab, helping to trigger the October event. 
    more » « less
  2. SUMMARY Plate-coupling estimates and previous seismicity indicate that portions of the Makran megathrust of southern Pakistan and Iran are partially coupled and have the potential to produce future magnitude 7+ earthquakes. However, the GPS observations needed to constrain coupling models are sparse and lead to an incomplete understanding of regional earthquake and tsunami hazard. In this study, we assess GPS velocities for plate coupling of the Makran subduction zone with specific attention to model resolution and the accretionary prism rheology. We use finite element model-derived Green's functions to invert for the interseismic slip deficit under both elastic and viscoelastic Earth assumptions. We use the model resolution matrix to characterize plate-coupling scenarios that are consistent with the limited spatial resolution afforded by GPS observations. We then forward model the corresponding tsunami responses at major coastal cities within the western Indian Ocean basin. Our plate-coupling results show potential segmentation of the megathrust with varying coupling from west to east, but do not rule out a scenario where the entire length of the megathrust could rupture in a single earthquake. The full subduction zone rupture scenarios suggest that the Makran may be able to produce earthquakes up to Mw 9.2. The corresponding tsunami model from the largest earthquake event (Mw 9.2) estimates maximum wave heights reaching 2–5 m at major port cities in the northern Arabian Sea region. Cities on the west coast of India are less affected (1–2 m). Coastlines bounding eastern Africa, and the Strait of Hormuz, are the least affected (<1 m). 
    more » « less
  3. Abstract The 1938MS8.3 and 2021MW8.2 earthquakes both ruptured within the Semidi segment of the Aleutian‐Alaska subduction zone. The large‐slip distribution of the 2021 event is well constrained within the depth range 25–45 km, with seaward tsunami observations excluding significant shallower coseismic slip. The 1938 event slip distribution is more uncertain. Regional and far‐field tide gauge observations for the 1938 event are modeled to constrain the location of large coseismic slip. The largest slip (2.0 m) is located below the continental shelf on a 180‐km‐long portion of the rupture extending further northeast than the 2021 rupture, to near Sitkinak Island. Minor slip (1.0 m) extends seaward under the continental slope to 8 km deep, where large slip may have occurred in 1788. The megathrust shallower than 25 km depth to the southwest experienced many small aftershocks and aseismic slip following the 2021 event, and has limited slip deficit. 
    more » « less
  4. Tsunamis in the last two decades have resulted in the loss of life of over 200,000 people and have caused billions of dollars in damage. There is therefore great motivation for the development and improvement of current tsunami warning systems. The work presented here represents advancements made towards the creation of a neural network-based tsunami warning system which can produce fast inundation forecasts with high accuracy. This was done by first improving the waveform resolution and accuracy of Tsunami Squares, an efficient cellular automata approach to wave simulation. It was then used to create a database of precomputed tsunamis in the event of a magnitude 9+ rupture of the Cascadia Subduction Zone, located only ∼100 km off the coast of Oregon, US. Our approach utilized a convolutional neural network which took wave height data from buoys as input and proved successful as maps of maximum inundation could be predicted for the town of Seaside, OR with a median error of ∼0.5 m. 
    more » « less
  5. Abstract On 18 November 2022, a large earthquake struck offshore southern Sumatra, generating a tsunami with 25 cm peak amplitude recorded at tide gauge station SBLT. OurW‐phase solution indicates a shallow dip of 6.2°, compatible with long‐period surface wave radiation patterns. Inversion of teleseismic body waves indicates a shallow slip distribution extending from about 10 km deep to near the trench with maximum slip of ∼4.1 m and seismic moment of  Nm (MW7.3). Joint modeling of seismic and tsunami data indicates a shallow rigidity of ∼23 GPa. We find a low moment‐scaled radiated energy of , similar to that of the 2010MW7.8 Mentawai event () and other tsunami earthquakes. These characteristics indicate that the 2022 event should be designated as a smaller moment magnitude tsunami earthquake compared to the other 12 well‐documented global occurrences since 1896. The 2022 event ruptured up‐dip of the 2007MW8.4 Bengkulu earthquake, demonstrating shallow seismogenic capability of a megathrust that had experienced both a deeper seismic event and adjacent shallow aseismic afterslip. We consider seismogenic behavior of shallow megathrusts and concern for future tsunami earthquakes in subduction zones globally, noting a correlation between tsunami earthquake occurrence and subducting seafloor covered with siliceous pelagic sediments. We suggest that the combination of pelagic clay and siliceous sediments and rough seafloor topography near the trench play important roles in controlling the genesis of tsunami earthquakes along Sumatra and other regions, rather than the subduction tectonic framework of accretionary or erosive margin. 
    more » « less