The Mongol-Okhotsk belt extends for more than 3000 km, from Mongolia to the Sea of Okhotsk in the northwest Pacific Ocean. It is the relict of the Mongol-Okhotsk ocean, a cryptic basin for which the timing, location and modes of opening and closure are still debated. One of the key components associated with the progressive closure and final collision and suturing of this ocean is the vast magmatic and volcanic record north and south of the presumed suture. Permian to Triassic magmatic and volcanic rocks are particularly abundant in the belt. They are characterized by bimodal volcanism, abundant calc-alkaline activity, secondary alkaline activity, and geochemical signatures that point to both volcanic-arc and within-plate origin as well as crustal and mantle sources. This has led to two main tectono-magmatic interpretations: (1) an Andean-style active margin modified by a mantle plume and/or affected by lithospheric delamination that evolved to a syn-and post-collisional setting, and (2) a mantle plume that recycled geochemical signatures from a long-lived active margin after the ocean was closed either by anatexis or by melting a remnant slab. These two models have first-order implications for the tectonic setting as well as for the location of the proposed mantle plume through time. We reconstruct the distribution of magmatic and volcanic provinces surrounding the Mongol-Okhotsk Suture Zone using G-Plates and the most recent paleomagnetic and mantle tomographic reconstructions to restore the position of the proposed mantle plume and the location of the slab between the Late Permian and Early Jurassic. Our reconstructions enable us to test the kinematic restoration and the viability of both the active subduction and the mantle plume models during the closure of the Mongol-Okhotsk Ocean.
more »
« less
Magmatism during the closure of the Mongol-Okhotsk Ocean: a tale of a sediment-rich collision
The Mongol-Okhotsk suture in NE Mongolia and SE Russia is the last vestige of the Mongol-Okhotsk Ocean, a basin that separated the Siberian from the North China Craton. Although the exact location of the suture is cryptic and the timing and kinematics of closure remains debated, magmatism north and south of the suture zone provide insight into the characteristics of the subduction system during the closure of this ocean. Magmatic provinces recording pre-, syn- and post-collisional processes (and potentially deeper mantle sources) along the Mongol Okhotsk Belt were emplaced from the Permian to Jurassic. Our compilation of geochemical, isotopic, and geochronologic data from 51 published studies shows that the age of peak magmatism and subsequent magmatic lull decreases eastward. We interpret this to record a shift in the locus of collision as the ocean zipped close. Most mafic rocks within the suture zone show the influence of lower crustal components and both spinel and garnet peridotites in the source. However, with one exception, their compositions are generally not consistent with a depleted mantle source (usually associated with MgO-TiO2-rich, isotopically fertile, and OIB components). Additionally, although significant geochemical variability due to crustal petrogenetic processes is observed, the data show a ubiquitous subduction signature characterized by enrichment in large ion lithophile elements, light rare earth elements, and La/Nb ratios, as well as by depletion in high field strength elements and heavy rare earth elements. We interpret the consistent peraluminous nature of the magmatic rocks before, during, and after collision, together with their crust-like Nb/U content, high (Th/Yb)/(Ba/La) and (Th/Nb)/(Ba/Nb) ratios, to reflect the strong influence of sediment melts throughout the collision process. This requires not only unusually high geothermal gradients (ca. 200 °C higher than a normal mantle wedge) that can partially melt sedimentary rocks along the whole subduction system, but also persistence of underplated, assimilated, and/or metasomatically incorporated sediments in the magma source during the continental closure. Together, the compiled data paint a picture of a sediment-rich magmatic engine above a hot, dynamic, subduction system with largely intact slabs.
more »
« less
- Award ID(s):
- 1917640
- PAR ID:
- 10345287
- Date Published:
- Journal Name:
- AGU Fall Meeting Abstracts
- Page Range / eLocation ID:
- T42C-08
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Back‐arc basins frequently form within subduction zones, creating sources of lithospheric weakness that can accommodate subsequent compressional deformation. The crustal structure of these basins, including whether they contain extended preexisting crust and/or new crust formed by seafloor spreading, can thus exert a major influence on strain partitioning in orogenic belts. Here, we present field observations, petrographic analyses, and major/trace element geochemical data from the Caucasus Basin, a back‐arc basin that initiated in continental lithosphere in the Jurassic and subsequently localized deformation in the present‐day Greater Caucasus during the latter stages of Cenozoic Arabia‐Eurasia continent‐continent collision. Our results reveal distinct lithologic and geochemical domains separated by south‐vergent thrust faults within the North Georgia fault system (NGFS) in the Republic of Georgia. Along the Enguri River, shallow intrusive and volcanic rocks are thrust over dominantly volcaniclastic cover, whereas along the Tskhenistskali River, intrusions into metasedimentary rocks are juxtaposed against volcanic flows. The presence of a minor depleted mantle geochemical signature in intrusive rocks from the Tskhenistskali traverse supports an episode of Jurassic seafloor spreading in the Caucasus Basin, with the resulting lithosphere facilitating Cenozoic basin closure by north‐dipping subduction during Arabia‐Eurasia collision. The Khaishi fault along the Enguri River and the Lentekhi fault along the Tskhenistskali river mark major juxtapositions in back‐arc crustal structure and may be components of the terminal suture indicating Caucasus Basin closure. Our results highlight how magmatic rocks in relict basin rocks can yield key insights into basin structure and orogenesis, even when no ophiolite is present.more » « less
-
Sun, Weeding (Ed.)Interaction of a subduction zone with an oceanic plateau has implications for plate tectonics. However, the geodynamic processes and petrological responses to oceanic plateau–arc interactions remain enigmatic. The southwestern Mariana and Yap arcs have experienced interactions with the Caroline Plateau, which have affected the regional tectonism. In this study, tholeiitic basalts and metamorphosed volcanic rocks (i.e., greenstones) were recovered from the southwestern Mariana forearc. The protoliths of the metamorphosed volcanic rocks have geochemical affinities to low-silica boninites. These boninitic rocks have similar K–Ar and apatite U–Pb ages of ca. 24 Ma, which record the timing of collision between the southwestern Mariana arc and the Caroline Plateau. 40Ar/39Ar dating of plagioclase in the tholeiitic basalts dates post-collisional magmatism to ca. 18 Ma. The tholeiites have geochemical signatures of fore-arc basalts (e.g., low Ti/V ratios and light rare earth element-depleted patterns) and high Th/Yb ratios, which reflect a depleted mantle source with a subduction component inherited from a pre-collisional subduction event. We suggest that the southwestern Mariana arc is an intra-oceanic arc that underwent plateau–arc collisions. These plateau–arc interactions affected the tectonic and magmatic evolution of the southwestern Mariana arc and nearby western Pacific basins.more » « less
-
null (Ed.)Abstract Mantle source heterogeneity and magmatic processes have been widely studied beneath most parts of the Southwest Indian Ridge (SWIR). But less is known from the newly recovered mid-ocean ridge basalts from the Dragon Bone Amagmatic Segment (53°E, SWIR) and the adjacent magmatically robust Dragon Flag Segment. Fresh basalt glasses from the Dragon Bone Segment are clearly more enriched in isotopic composition than the adjacent Dragon Flag basalts, but the trace element ratios of the Dragon Flag basalts are more extreme compared with average mid-ocean ridge basalts (MORB) than the Dragon Bone basalts. Their geochemical differences can be explained only by source differences rather than by variations in degree of melting of a roughly similar source. The Dragon Flag basalts are influenced by an arc-like mantle component as evidenced by enrichment in fluid-mobile over fluid-immobile elements. However, the sub-ridge mantle at the Dragon Flag Segment is depleted in melt component compared with a normal MORB source owing to previous melting in the subarc. This fluid-metasomatized, subarc depleted mantle is entrained beneath the Dragon Flag Segment. In comparison, for the Dragon Bone axial basalts, their Pb isotopic compositions and their slight enrichment in Ba, Nb, Ta, K, La, Sr and Zr and depletion in Pb and Ti concentrations show resemblance to the Ejeda–Bekily dikes of Madagascar. Also, Dragon Bone Sr and Nd isotopic compositions together with the Ce/Pb, La/Nb and La/Th ratios can be modeled by mixing the most isotopically depleted Dragon Flag basalts with a composition within the range of the Ejeda–Bekily dikes. It is therefore proposed that the Dragon Bone axial basalts, similar to the Ejeda–Bekily dikes, are sourced from subcontinental lithospheric Archean mantle beneath Gondwana, pulled from beneath the Madagascar Plateau. The recycling of the residual subarc mantle and the subcontinental lithospheric mantle could be related to either the breakup of Gondwana or the formation and accretion of Neoproterozoic island arc terranes during the collapse of the Mozambique Ocean, and is now present beneath the ridge.more » « less
-
The growth and evolution of the Eurasian continent involved the progressive closure of major ocean basins during the Phanerozoic, including the Tethyan and Paleo-Asian oceanic realms. Unraveling this complicated history requires interpreting multiple overprinted episodes of subduction-related magmatism and collisional orogeny, the products of which were later affected by the Cenozoic construction of the Himalayan-Tibetan orogen due to the India-Asia collision. In particular, the tectonic evolution of northern Tibet surrounding the Cenozoic Qaidam Basin is poorly resolved due to several phases of Phanerozoic orogeny that have been reactivated during the Cenozoic deformation. In this study, we investigated the geology of the northern Qaidam continent, which experienced Paleozoic–Mesozoic tectonic activity associated with the development of the Eastern Kunlun orogen to the south and the Qilian orogen to the north. We combined new and published field observations, geochronologic and thermochronologic ages, and geochemical data to construct regional tectonostratigraphic sections and bracket phases of Paleozoic–Mesozoic magmatism associated with oceanic subduction and continental collision. Results suggest that the Qaidam continent experienced two major phases of subduction magmatism and collision. First, a Cambrian–Ordovician magmatic arc developed in the northern Qaidam continent due to south-dipping subduction. This phase was followed by the closure of the Qilian Ocean and the collision of the North China craton and Qaidam continent, resulting in Silurian–Devonian orogeny and the development of a regional unconformity across northern Tibet. A subsequent Permian–Triassic magmatic arc developed across the northern Qaidam continent due to north-dipping subduction. This phase was followed by the closure of the Neo-Kunlun Ocean and the collision of the Songpan Ganzi terrane in the south and Qaidam continent. These interpretations are incorporated into a new and comprehensive model for the Phanerozoic formation of northern Tibet and the Eurasia continent.more » « less
An official website of the United States government

