skip to main content

This content will become publicly available on July 22, 2023

Title: Effects of Varying Land Coverage, Rotation Period, and Water Vapor on Equatorial Climates that Bridge the Gap between Earth-like and Titan-like
Abstract Saturn’s largest moon, Titan, has an Earth-like volatile cycle, but with methane playing the role of water and surface liquid reservoirs geographically isolated at high latitudes. We recreate Titan’s characteristic dry hydroclimate at the equator of an Earth-like climate model without seasons and with water as the condensable by varying a small set of planetary parameters. We use three observationally motivated criteria for Titan-like conditions at the equator: 1) the peak in surface specific humidity is not at the equator, despite it having the warmest annual-mean temperatures; 2) the vertical profile of specific humidity in the equatorial column is nearly constant through the lower troposphere; and 3) the relative humidity near the surface at the equator is significantly lower than saturation (lower than 60%). We find that simply reducing the available water at the equator does not fully reproduce Titan-like conditions. We additionally vary the rotation period and volatility of water to mimic Titan’s slower rotation and more abundant methane vapor. Longer rotation periods coupled with a dry equatorial surface meet fewer of the Titan-like criteria than equivalent experiments with shorter rotation periods. Experiments with higher volatility of water meet more criteria than those with lower volatility, with some more » of those with the highest volatility meeting all three, demonstrating that an Earth-like planet can display Titan-like climatology by changing only a few physical parameters. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of the Atmospheric Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rimmore »escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. Na-ion conducting solid electrolytes can enable both the enhanced safety profile of all-solid-state-batteries and the transition to an earth-abundant charge-carrier for large-scale stationary storage. In this work, we developed new perovskite-structured Na-ion conductors from the analogous fast Li-ion conducting Li 3 x La 2/3− x TiO 3 (LLTO), testing strategies of chemo-mechanical and defect engineering. Na x La 2/3−1/3 x ZrO 3 (NLZ) and Na x La 1/3−1/3 x Ba 0.5 ZrO 3 (NLBZ) were prepared using a modified Pechini method with varying initial stoichiometries and sintering temperatures. With the substitution of larger framework cations Zr 4+ and Ba 2+ on B- and A-sites respectively, NLZ and NLBZ both had larger lattice parameters compared to LLTO, in order to accommodate and potentially enhance the transport of larger Na ions. Additionally, we sought to introduce Na vacancies through (a) sub-stoichiometric Na : La ratios, (b) Na loss during sintering, and (c) donor doping with Nb. AC impedance spectroscopy and DC polarization experiments were performed on both Na 0.5 La 0.5 ZrO 3 and Na 0.25 La 0.25 Ba 0.5 ZrO 3 in controlled gas environments (variable oxygen partial pressure, humidity) at elevated temperatures to quantify the contributions of various possible charge carriers (sodiummore »ions, holes, electrons, oxygen ions, protons). Our results showed that the lattice-enlarged NLZ and NLBZ exhibited ∼19× (conventional sintering)/49× (spark plasma sintering) and ∼7× higher Na-ion conductivities, respectively, compared to unexpanded Na 0.42 La 0.525 TiO 3 . Moreover, the Na-ion conductivity of Na 0.5 La 0.5 ZrO 3 is comparable with that of NaNbO 3 , despite having half the carrier concentration. Additionally, more than 96% of the total conductivity in dry conditions was contributed by sodium ions for both compositions, with negligible electronic conductivity and little oxygen ion conductivity. We also identified factors that limited Na-ion transport: NLZ and NLBZ were both challenging to densify using conventional sintering without the loss of Na because of its volatility. With spark plasma sintering, higher density can be achieved. In addition, the NLZ perovskite phase appeared unable to accommodate significant Na deficiency, whereas NLBZ allowed some. Density functional theory calculations supported a thermodynamic limitation to creation of Na-deficient NLZ in favor of a pyrochlore-type phase. Humid environments generated different behavior: in Na 0.25 La 0.25 Ba 0.5 ZrO 3 , incorporated protons raised total conductivity, whereas in Na 0.5 La 0.5 ZrO 3 , they lowered total conductivity. Ultimately, this systematic approach revealed both effective approaches and limitations to achieving super-ionic Na-ion conductivity, which may eventually be overcome through alternative processing routes.« less
  4. The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwellingmore »of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

    « less
  5. The impact of global warming–induced intertropical convergence zone (ITCZ) narrowing onto the higher-latitude circulation is examined in the GFDL Atmospheric Model, version 2.1 (AM2.1), run over zonally symmetric aquaplanet boundary conditions. A striking reconfiguration of the deep tropical precipitation from double-peaked, off-equatorial ascent to a single peak at the equator occurs under a globally uniform +4 K sea surface temperature (SST) perturbation. This response is found to be highly sensitive to the SST profile used to force the model. By making small (≤1 K) perturbations to the surface temperature in the deep tropics, varying control simulation precipitation patterns with both single and double ITCZs are generated. Across the climatologies, narrower regions of ascent correspond to more equatorward Hadley cell edges and eddy-driven jets. Under the global warming perturbation, the experiments in which there is narrowing of the ITCZ show significantly less expansion of the Hadley cell and somewhat less poleward shift of the eddy-driven jet than those without ITCZ narrowing. With a narrower ITCZ, the ascending air has larger zonal momentum, causing more westerly upper-tropospheric subtropical wind. In turn, this implies 1) the subtropical jet will become baroclinically unstable at a lower latitude and 2) the critical (zero wind) linemore »will shift equatorward, allowing midlatitude eddies to propagate farther equatorward. Both of these mechanisms modify the Hadley cell edge position, and the latter affects the jet position.

    « less