skip to main content


Title: Abyssal Heat Budget in the Southwest Pacific Basin
Abstract The abyssal Southwest Pacific Basin has warmed significantly between 1992-2017, consistent with warming along the bottom limb of the meridional overturning circulation seen throughout the global oceans. Here we present a framework for assessing the abyssal heat budget that includes the time-dependent unsteady effects of decadal warming and direct and indirect estimates of diapycnal mixing from microscale temperature measurements and finescale parameterizations. The unsteady terms estimated from the decadalwarming rate are shown to be within a factor of 3 of the steady state terms in the abyssal heat budget for the coldest portion of the water column and therefore, cannot be ignored. We show that a reduction in the lateral heat flux for the coldest temperature classes compensated by an increase in warmer waters advected into the basin has important implications for the heat balance and diffusive heat fluxes in the basin. Finally, vertical diffusive heat fluxes are estimated in different ways: using the newly available CTD-mounted microscale temperature measurements, a finescale strain parameterization, and a vertical kinetic energy parameterization from data along the P06 transect along 32.5°S. The unsteady-state abyssal heat budget for the basin shows closure within error estimates, demonstrating that (i) unsteady terms have become consequential for the heat balance in the isotherms closest to the ocean bottom and (ii) direct and indirect estimates from full depth GO-SHIP hydrographic transects averaged over similarly large spatial and temporal scales can capture the basin-averaged abyssal mixing needed to close the deep overturning circulation.  more » « less
Award ID(s):
2023397 1923558
NSF-PAR ID:
10345296
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Indo-Pacific Ocean appears exponentially stratified between 1- and 3-km depth with a decay scale on the order of 1 km. In his celebrated paper “Abyssal recipes,” W. Munk proposed a theoretical explanation of these observations by suggesting a pointwise buoyancy balance between the upwelling of cold water and the downward diffusion of heat. Assuming a constant upwelling velocity w and turbulent diffusivity κ , the model yields an exponential stratification whose decay scale is consistent with observations if κ ∼ 10 −4 m 2 s −1 . Over time, much effort has been made to reconcile Munk’s ideas with evidence of vertical variability in κ , but comparably little emphasis has been placed on the even stronger evidence that w decays toward the surface. In particular, the basin-averaged w nearly vanishes at 1-km depth in the Indo-Pacific. In light of this evidence, we consider a variable-coefficient, basin-averaged analog of Munk’s budget, which we verify against a hierarchy of numerical models ranging from an idealized basin-and-channel configuration to a coarse global ocean simulation. Study of the budget reveals that the decay of basin-averaged w requires a concurrent decay in basin-averaged κ to produce an exponential-like stratification. As such, the frequently cited value of 10 −4 m 2 s −1 is representative only of the bottom of the middepths, whereas κ must be much smaller above. The decay of mixing in the vertical is as important to the stratification as its magnitude . Significance Statement Using a combination of theory and numerical simulations, it is argued that the observed magnitude and shape of the global ocean stratification and overturning circulation appear to demand that turbulent mixing increases quasi-exponentially toward the ocean bottom. Climate models must therefore prescribe such a vertical profile of turbulent mixing in order to properly represent the heat and carbon uptake accomplished by the global overturning circulation on centennial and longer time scales. 
    more » « less
  2. Abstract The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories. 
    more » « less
  3. Abstract Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in-situ turbulence suggest that mixing is bottom-enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer Release Experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari (2021) derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in-situ diffusion as well as an additional non-linear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (< 20%), especially compared to the O (1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing. 
    more » « less
  4. Abstract ABSTRACT: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography “hotspots”, where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger up-welling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model which approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation. 
    more » « less
  5. Abstract

    As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed.

     
    more » « less